Codeforces Round #575 (Div. 3) E. Connected Component on a Chessboard(思维,构造)
E. Connected Component on a Chessboard
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
You are given two integers b and w. You have a chessboard of size 109×109 with the top left cell at (1;1), the cell (1;1) is painted white.
Your task is to find a connected component on this chessboard that contains exactly b black cells and exactly w white cells. Two cells are called connected if they share a side (i.e. for the cell (x,y) there are at most four connected cells: (x−1,y),(x+1,y),(x,y−1),(x,y+1)). A set of cells is called a connected component if for every pair of cells C1 and C2 from this set, there exists a sequence of cells c1, c2, ..., ck such that c1=C1, ck=C2, all ci from 1 to k are belong to this set of cells and for every i∈[1,k−1], cells ci and ci+1 are connected.
Obviously, it can be impossible to find such component. In this case print "NO". Otherwise, print "YES" and any suitable connected component.
You have to answer q independent queries.
Input
The first line of the input contains one integer q (1≤q≤105) — the number of queries. Then q queries follow.
The only line of the query contains two integers b and w (1≤b,w≤105) — the number of black cells required and the number of white cells required.
It is guaranteed that the sum of numbers of cells does not exceed 2⋅105 (∑w+∑b≤2⋅105).
Output
For each query, print the answer to it.
If it is impossible to find the required component, print "NO" on the first line.
Otherwise, print "YES" on the first line. In the next b+w lines print coordinates of cells of your component in any order. There should be exactly b black cells and w white cells in your answer. The printed component should be connected.
If there are several answers, you can print any. All coordinates in the answer should be in the range [1;109].
Example
inputCopy
3
1 1
1 4
2 5
outputCopy
YES
2 2
1 2
YES
2 3
1 3
3 3
2 2
2 4
YES
2 3
2 4
2 5
1 3
1 5
3 3
3 5
题意:
给你一个1e9*1e9的黑白棋盘,让你构造一个联通块,联通块中黑色个数为b,白色为w
思路:
直接构造一个横着的联通块,显然满足数据范围。
对黑色个数多还是白色个数多分开讨论,
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2)ans = ans * a % MOD; a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
// freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
int q;
gg(q);
while (q--)
{
int b, w;
gg(b); gg(w);
if (b < w)
{
int m = b * 3 + 1;
if (w <= m)
{
printf("YES\n");
cout<<2<<" "<<2<<endl;
w--;
int x=3;
int y=2;
while(1)
{
cout<<y<<" "<<x<<endl;
if(w>b)
{
cout<<y-1<<" "<<x<<endl;
w--;
}
if(w>b)
{
cout<<y+1<<" "<<x<<endl;
w--;
}
if(w)
{
cout<<y<<" "<<x+1<<endl;
w--;
}
b--;
if(!b&&!w)
{
break;
}
x+=2;
}
} else
{
printf("NO\n");
}
} else
{
int m = w * 3 + 1;
if (b <= m)
{
printf("YES\n");
cout<<2<<" "<<3<<endl;
b--;
int x=4;
int y=2;
while(1)
{
cout<<y<<" "<<x<<endl;
if(b>w)
{
cout<<y-1<<" "<<x<<endl;
b--;
}
if(b>w)
{
cout<<y+1<<" "<<x<<endl;
b--;
}
if(b)
{
cout<<y<<" "<<x+1<<endl;
b--;
}
w--;
if(!b&&!w)
{
break;
}
x+=2;
}
} else
{
printf("NO\n");
}
}
cout<<endl;
}
return 0;
}
inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Codeforces Round #575 (Div. 3) E. Connected Component on a Chessboard(思维,构造)的更多相关文章
- Codeforces Round #575 (Div. 3) E. Connected Component on a Chessboard
传送门 题意: 给你一个黑白相间的1e9*1e9的棋盘,你需要从里面找出来由b个黑色的格子和w个白色的格子组成的连通器(就是你找出来的b+w个格子要连接在一起,不需要成环).问你可不可以找出来,如果可 ...
- Codeforces Round #553 (Div. 2)B. Dima and a Bad XOR 思维构造+异或警告
题意: 给出一个矩阵n(<=500)*m(<=500)每一行任选一个数 异或在一起 求一个 异或在一起不为0 的每行的取值列号 思路: 异或的性质 交换律 x1^x2^x3==x3^x2 ...
- Codeforces Round #575 (Div. 3) 昨天的div3 补题
Codeforces Round #575 (Div. 3) 这个div3打的太差了,心态都崩了. B. Odd Sum Segments B 题我就想了很久,这个题目我是找的奇数的个数,因为奇数想分 ...
- Codeforces Round #575 (Div. 3) 题解
比赛链接:https://codeforc.es/contest/1196 A. Three Piles of Candies 题意:两个人分三堆糖果,两个人先各拿一堆,然后剩下一堆随意分配,使两个人 ...
- Codeforces Round #529 (Div. 3) E. Almost Regular Bracket Sequence (思维)
Codeforces Round #529 (Div. 3) 题目传送门 题意: 给你由左右括号组成的字符串,问你有多少处括号翻转过来是合法的序列 思路: 这么考虑: 如果是左括号 1)整个序列左括号 ...
- Codeforces Round #575 (Div. 3)
本蒟蒻已经掉到灰名了(菜到落泪),希望这次打完能重回绿名吧...... 这次赛中A了三题 下面是本蒟蒻的题解 A.Three Piles of Candies 这题没啥好说的,相加除2就完事了 #in ...
- Codeforces Round #575 (Div. 3) D2. RGB Substring (hard version) 水题
D2. RGB Substring (hard version) inputstandard input outputstandard output The only difference betwe ...
- Codeforces Round #575 (Div. 3) D1+D2. RGB Substring (easy version) D2. RGB Substring (hard version) (思维,枚举,前缀和)
D1. RGB Substring (easy version) time limit per test2 seconds memory limit per test256 megabytes inp ...
- Codeforces Round #575 (Div. 3) C. Robot Breakout (模拟,实现)
C. Robot Breakout time limit per test3 seconds memory limit per test256 megabytes inputstandard inpu ...
随机推荐
- kotlin之字符串
在kotlin 中 使用String 表示字符串类型,如下二类字符串 一 普通字符串 var s1 = "hello world" 二 保留原始格式的字符串 var s2 = &q ...
- Web自动化测试—— Selenium+Python Windows环境搭建
环境搭建前的准备: 1.到Python官网下载Python安装包:https://www.python.org/ 如果不能访问,可以试试下面的解决办法: a).安装VPN网络连接工具,推荐用Green ...
- XAMPP安装后启动Apache的Busy解决方法
启动apache后,一直提示80 busy 使用netstat -ano查看,并无端口占用,真是奇怪. 百度之后发现有可能是启动后,ssl端口占用导致. XAMPP默认会加载一个SSL模块,它要占用一 ...
- Python新手最容易犯的十大错误
1. 忘记写冒号 在 if.elif.else.for.while.class.def 语句后面忘记添加“:” if spam == 42 print('Hello!') 2. 误用 “=” 做等值比 ...
- Oracle 归档日志管理
一.Oracle日志介绍 1.Oracle日志分类 分三大类: Alert log files--警报日志,Trace files--跟踪日志(用户和进程)和 redo log ...
- 短信验证码api
最近遇到的项目需要个随机短信验证码实现注册用户 选用的是“云信使”,因为有15条免费的测试短信可以验证代码是否正确调用该短信api 地址 进入短信平台 一.实名认证 + 短信模板 用户认证完成后,创建 ...
- Django 中 ModelForm 的使用
定义 ModelForm 定制 ModelForm Meta 在 Form 中另外定义 Field 值得一提的一些 Field 转化 AutoField BooleanField ForeignKey ...
- Python学习之数据库初识
9 数据库 9.1 数据库的初识 数据库是可以独立运行的,并且可以对数据的增删改查提供高效便捷方式的工具. 数据库解决的问题: 解决了操作文件的效率和便捷问题 解决了多个服务同时使用数据时 ...
- java锁机制的面试题
java锁机制的面试题 1.ABA问题 2.CAS乐观锁 3.synchronize实现原理 4.synchronize与lock的区别 5.volatile实现原理 6.乐观锁的业务场景及实现方式 ...
- vmnet2访问外网
1.vmnet2用于内网之间的访问,外部网络访问不了它.它可以访问外网,要想访问外网就必须有真实主机共享网络给它 2.[root@localhost ~]# vim /etc/sysconfig/ne ...