HNCPC2019H 有向图
题目
设\(f_i\)表示经过\(i\)的期望次数。那么显然答案\(ans_j=\sum\limits_{i=1}^nf_iP_{i,j}\)。
我们可以轻松地列出转移式子:
\]
\]
高消即可。
#include<bits/stdc++.h>
using namespace std;
const int N=1007,P=1000000007;
int p[N][N],a[N][N];
int inc(int a,int b){a+=b;return a>=P? a-P:a;}
int mns(int a,int b){a-=b;return a<0? a+P:a;}
int mul(int a,int b){return 1ll*a*b%P;}
int inv(int a){int r=1,k=P-2;for(;k;k>>=1,a=mul(a,a))if(k&1)r=mul(a,r);return r;}
int read(){int x;cin>>x;return x;}
int main()
{
freopen("1.in","r",stdin);
int n,m,i,j,k,x,ans,Inv=inv(10000);
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(a,0,sizeof a);
for(i=1;i<=n;++i) for(j=1;j<=n+m;++j) p[i][j]=mul(read(),Inv);
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j) a[i][j]=i==j? mns(p[j][i],1):p[j][i];
a[i][n+1]=i==1? P-1:0;
}
for(i=1;i<=n;++i) for(j=1;j<=n;++j) if(i^j) for(x=mul(a[j][i],inv(a[i][i])),k=1;k<=n+1;++k) a[j][k]=mns(a[j][k],mul(a[i][k],x));
for(i=1;i<=n;++i) a[i][n+1]=mul(a[i][n+1],inv(a[i][i]));
for(i=n+1;i<=n+m;++i)
{
for(ans=0,j=1;j<=n;++j) ans=inc(ans,mul(p[j][i],a[j][n+1]));
printf("%d ",ans);
}
puts("");
}
}
HNCPC2019H 有向图的更多相关文章
- 关于有向图走“无限次”后求概率/期望的口胡/【题解】HNCPC2019H 有向图
关于有向图走"无限次"后求概率/期望的口胡/[题解]HNCPC2019H 有向图 全是口胡 假了不管 讨论的都是图\(G=(V,E),|V|=n,|E|=m\)上的情况 " ...
- Kosaraju 算法检测有向图的强连通性
给定一个有向图 G = (V, E) ,对于任意一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的,则说明该图 G 是强连通的(Strong ...
- POJ 2337 Catenyms(有向图的欧拉通路)
题意:给n个字符串(3<=n<=1000),当字符串str[i]的尾字符与str[j]的首字符一样时,可用dot连接.判断用所有字符串一次且仅一次,连接成一串.若可以,输出答案的最小字典序 ...
- code forces 383 Arpa's loud Owf and Mehrdad's evil plan(有向图最小环)
Arpa's loud Owf and Mehrdad's evil plan time limit per test 1 second memory limit per test 256 megab ...
- 有向图强连通分量的Tarjan算法
有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...
- hdu1269迷宫城堡(判断有向图是否是一个强连通图)
1 /* 题意: 给你一个图,求这个有向图示否是一个强连通图(每两个节点都是可以相互到达的)! 思路1:按正向边dfs一遍,将经过的节点计数,如果记录的节点的个数小于n,那么就说明图按照正向边就不是连 ...
- poj 1386 Play on Words(有向图欧拉回路)
/* 题意:单词拼接,前一个单词的末尾字母和后一个单词的开头字母相同 思路:将一个单词的开头和末尾单词分别做两个点并建一条有向边!然后判断是否存在欧拉回路或者欧拉路 再次强调有向图欧拉路或欧拉回路的判 ...
- NYOJ 99单词拼接(有向图的欧拉(回)路)
/* NYOJ 99单词拼接: 思路:欧拉回路或者欧拉路的搜索! 注意:是有向图的!不要当成无向图,否则在在搜索之前的判断中因为判断有无导致不必要的搜索,以致TLE! 有向图的欧拉路:abs(In[i ...
- 邻接表有向图(三)之 Java详解
前面分别介绍了邻接表有向图的C和C++实现,本文通过Java实现邻接表有向图. 目录 1. 邻接表有向图的介绍 2. 邻接表有向图的代码说明 3. 邻接表有向图的完整源码 转载请注明出处:http:/ ...
随机推荐
- 配置:Uri
URI是网络资源的定义,代表了要操作的数据,Uri主要包含了两部分信息: 1>需要操作的ContentProvider 2>对ContentProvider中的什么数据进行操作 一个 ...
- JS常用正则表达式验证
一.电话+手机 重点是正则表达式: var myreg=/^[1][3,4,5,7,8][0-9]{9}$/; 表达式的意思是: 1--以1为开头: 2--第二位可为3,4,5,7,8,中的任意一位: ...
- 在最新的 create-react-app 中添加 less 支持
前置知识: 把 webpack 的相关配置暴露出来 运行 git add -A 运行 git commit -m 'project init' 运行 yarn eject 然后选 y 项目中多出来两个 ...
- C# Cache缓存的应用
缓存类Cache的使用 直接先上代码 public class CacheHelper { private static string fileName = @"D:\huage.txt&q ...
- sublime text3 - vue修改data,视图无更新
ubuntu系统使用sublime text3做vue开发的时候遇到了一个问题,就是修改vue文件并保存后视图页面并不会随之修改,只有重新run dev时修改才会生效,原因没找到 猜想应该是subli ...
- (转载)FM 算法
(转载)FM算法 https://zhuanlan.zhihu.com/p/33184179
- 使用http-server在本地搭建一个HTTP服务器
安装http-server 在控制台中输入 npm install http-server -g 进行全局安装 共享资源 进入需要共享资源的目录,比如 D:\,然后在控制台中输入 http-serve ...
- hibernate一对一单项关联映射
一.主键关联 1.两个实体对象的主键一样,以表明它们之间的一一对应关系: 2.不需要多余的外键字段来维护关系,仅通过主键来关联,即Person的主键要依赖IdCard的主键,他们共用一个主键值. Pe ...
- oracle备份和还原
用exp命令即可完成,但要看具体的备份方式. 1. 导出一个完整数据库 exp system/manager file=bible_db log=dible_db full=y 2. 导出数据库定义而 ...
- 【mysql】如何通过navicat配置表与表的多对一关系,一对一关系?设计外键的效果
背景: 现在要将接口自动化测试结果持久化,当前只是每次运行接口测试,将测试结果通过邮件发送给项目组成员.邮件内容如下: 表设计: 为了呈现这个结果:我设计了2张表run_result和run_deta ...