千万注意opencv的轮廓检测和边缘检测是两码事

本文链接:https://blog.csdn.net/wsp_1138886114/article/details/82945328

1 获取轮廓

OpenCV2获取轮廓主要是用 cv2.findContours()

import cv2

img = cv2.imread('wujiaoxing.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret,binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) _,contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) draw_img0 = cv2.drawContours(img.copy(),contours,0,(0,255,255),3)
draw_img1 = cv2.drawContours(img.copy(),contours,1,(255,0,255),3)
draw_img2 = cv2.drawContours(img.copy(),contours,2,(255,255,0),3)
draw_img3 = cv2.drawContours(img.copy(), contours, -1, (0, 0, 255), 3) print ("contours:类型:",type(contours))
print ("第0 个contours:",type(contours[0]))
print ("contours 数量:",len(contours)) print ("contours[0]点的个数:",len(contours[0]))
print ("contours[1]点的个数:",len(contours[1])) cv2.imshow("img", img)
cv2.imshow("draw_img0", draw_img0)
cv2.imshow("draw_img1", draw_img1)
cv2.imshow("draw_img2", draw_img2)
cv2.imshow("draw_img3", draw_img3) cv2.waitKey(0)
cv2.destroyAllWindows() 输出:
contours:类型: <class 'list'>
第0 个contours: <class 'numpy.ndarray'>
contours 数量: 3
contours[0]点的个数: 6
contours[1]点的个数: 74

  

其中,cv2.findContours() 的第二个参数主要有

cv2.RETR_LIST:检测的轮廓不建立等级关系
cv2.RETR_TREE:L建立一个等级树结构的轮廓。
cv2.RETR_CCOMP:建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。
cv2.RETR_EXTERNAL:表示只检测外轮廓
cv2.findContours() 的第三个参数 method为轮廓的近似办法

cv2.CHAIN_APPROX_NONE存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))==1
cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
cv2.CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS使用teh-Chinl chain 近似算法
1.1 返回值:image, contours, hierarchy
contour返回值
cv2.findContours()函数首先返回一个list,list中每个元素都是图像中的一个轮廓,用numpy中的ndarray表示。
hierarchy返回值
该函数还可返回一个可选的hiararchy结果,这是一个ndarray,其中的元素个数和轮廓个数相同,每个轮廓contours[i]对应4个hierarchy元素hierarchy[i][0] ~hierarchy[i][3],分别表示后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号,如果没有对应项,则该值为负数。
2 绘出轮廓
cv2.drawContours()函数
cv2.drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset ]]]]])

第一个参数是指明在哪幅图像上绘制轮廓;
第二个参数是轮廓本身,在Python中是一个list。
第三个参数指定绘制轮廓list中的哪条轮廓,如果是-1,则绘制其中的所有轮廓。后面的参数很简单。其中thickness表明轮廓线的宽度,如果是-1(cv2.FILLED),则为填充模式。绘制参数将在以后独立详细介绍。
为了看到自己画了哪些轮廓,可以使用 cv2.boundingRect()函数获取轮廓的范围,即左上角原点,以及他的高和宽。然后用cv2.rectangle()方法画出矩形轮廓

"""
x, y, w, h = cv2.boundingRect(img)
参数:
img 是一个二值图
x,y 是矩阵左上点的坐标,
w,h 是矩阵的宽和高 cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0), 2)
img: 原图
(x,y): 矩阵的左上点坐标
(x+w,y+h):是矩阵的右下点坐标
(0,255,0): 是画线对应的rgb颜色
2: 线宽
"""
for i in range(0,len(contours)):
x, y, w, h = cv2.boundingRect(contours[i])
cv2.rectangle(image, (x,y), (x+w,y+h), (153,153,0), 5)

3 获取轮廓区域

new_image=image[y+2:y+h-2,x+2:x+w-2]    # 先用y确定高,再用x确定宽
input_dir=("E:/cut_image/")
if not os.path.isdir(input_dir):
os.makedirs(input_dir)
cv2.imwrite( nrootdir+str(i)+".jpg",newimage)
print (i)

4 获取物体最小外界矩阵
使用 cv2.minAreaRect(cnt) ,返回点集cnt的最小外接矩形,cnt是所要求最小外接矩形的点集数组或向量,这个点集不定个数。
其中:cnt = np.array([[x1,y1],[x2,y2],[x3,y3],[x4,y4]]) # 必须是array数组的形式

rect = cv2.minAreaRect(cnt) # 得到最小外接矩形的(中心(x,y), (宽,高), 旋转角度)
box = np.int0(cv2.boxPoints(rect)) #通过box会出矩形框

OpenCV—Python 轮廓检测 绘出矩形框(findContours\ boundingRect\rectangle的更多相关文章

  1. OpenCV图像轮廓检测

    轮廓检测: 轮廓检测的原理通俗的说就是掏空内部点,比如原图中有3*3的矩形点.那么就可以将中间的那一点去掉. 一.关键函数1.1  cvFindContours函数功能:对图像进行轮廓检测,这个函数将 ...

  2. opencv HSV找颜色,找轮廓用最小旋转矩形框出

    #include <opencv2/opencv.hpp> #include<iostream> #include<string> using namespace ...

  3. OpenCV + Python 人脸检测

    必备知识 Haar-like opencv api 读取图片 灰度转换 画图 显示图像 获取人脸识别训练数据 探测人脸 处理人脸探测的结果 实例 图片素材 人脸检测代码 人脸检测结果 总结 下午的时候 ...

  4. OpenCV 闭合轮廓检测

    这个好像是骨头什么的,但是要求轮廓闭合,于是对图片进行一下膨胀操作,再次检测轮廓就好了. // A closed contour.cpp : 定义控制台应用程序的入口点. // #include &q ...

  5. appium+python自动化98-非select弹出选择框定位解决

    前言 遇到问题:document.getElementsByClassName(...)[0] is undefined 选择框如果是select标签的,可以直接用select专用的方法去定位点击操作 ...

  6. 15、OpenCV Python 轮廓发现

    __author__ = "WSX" import cv2 as cv import numpy as np # 基于拓扑结构来发现和绘制(边缘提取) # cv.findConto ...

  7. 14、OpenCV Python 直线检测

    __author__ = "WSX" import cv2 as cv import numpy as np #-----------------霍夫变换------------- ...

  8. 【python+opencv】轮廓发现

    python+opencv---轮廓发现 轮廓发现---是基于图像边缘提取的基础寻找对象轮廓的方法, 所有边缘提取的阈值选定会影响最终轮廓发现的结果. 介绍两种API使用: -cv.findConto ...

  9. Opencv在视频中静态、动态方式绘制矩形框ROI

    Opencv视频处理中的目标跟踪经常用到要在视频上画一个矩形框ROI,标注出要跟踪的物体,这里介绍两种在视频中绘制矩形框的方法,一种是"静态的",一种是"动态的" ...

随机推荐

  1. JS-格式化json

    一 使用原生 JSON.stringify 实现 <textarea name="" id="myTA" cols="30" rows ...

  2. 通过VLC的ActiveX进行二次开发,实现一个多媒体播放器 2011-04-10 00:57:23

    http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=25498312&id=218294  通过VLC的ActiveX进行二 ...

  3. 非典型T_SQL的总结

      ------over的两种常用的用法--- --第一种分组 当然要注意了,这里的分组并不是实际的分组,而是根据你的业务需求而坐的临时分组   select roomguid,Room, avg(t ...

  4. postman测试wsdl类型接口

    1 IP地址来源搜索 WEB 服务 接口信息 http://www.webxml.com.cn/WebServices/WeatherWebService.asmx?wsdl 2  设置接口调用地址 ...

  5. 【ABAP系列】SAP ABAP基础-数据更新至数据库操作解析

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP ABAP基础-数据更新至 ...

  6. 【ABAP系列】SAP ABAP常用正则表达式大全

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP ABAP常用正则表达式大 ...

  7. 编程语言 - 大数据 - Hadoop

    Hive - 特例函数 rlike

  8. JavaScript List

    function List() {    this.listSize = 0;    this.pos = 0;    this.dataSource = [];    this.clear = fu ...

  9. PHP_CodeIgniter Github实现个人空间

    github支持github Pages 可以实现自己的个人空间 XXX.github.io/project 1 注册自己的github账户 2 需要设置自己的user_name, user_name ...

  10. Netty之揭开BootStrap 的神秘面纱

    客户端BootStrap: Bootstrap 是Netty 提供的一个便利的工厂类, 我们可以通过它来完成Netty 的客户端或服务器端的Netty 初始化.下面我先来看一个例子, 从客户端和服务器 ...