BZOJ 3456: 城市规划(dp+多项式求逆)
解题思路
这道题就是求带标号的无向连通图个数,首先考虑\(O(n^2)\)的做法,设\(f_i\)表示有\(i\)个节点的无向连通图个数,那么考虑容斥,先把所有的无向图求出,即为\(2^{C(n,2)}\),再减去不联通的情况,而计算不联通情况时可以枚举\(1\)号点这个联通块的大小,就有方程
\[f_i=2^{C_i^2}-\sum\limits_{j=1}^{i-1}C_{i-1}^{j-1}2^{C^2_{i-j}}f_j\]
发现这样的时间复杂度为\(O(n^2)\)的,无法通过本题。考虑优化,我们设法把左右两边的\(f\)合并,可以给式子同时除一个\((i-1)!\),可得
\[\frac{f_i}{(i-1)!}=\frac{2^{C_i^2}}{(i-1)!}-\sum\limits_{j=1}^{i-1}\frac{2^{C^2_{i-j}}f_j}{(j-1)!(i-j)!}\]
发现右边假设\(j\)枚举到\(i\)正好是左边,那么就移项。
\[\sum\limits_{j=1}^i\frac{C^{2}_{i-j}f_j}{(j-1)!(i-j)!}=\frac{2^{C_i^2}}{(i-1)!}\]
右边是卷积的形式
\[\sum\limits_{j=1}^i\frac{f_j}{(j-1)!}*\frac{2^{C^2_{i-j}}}{(i-j)!}=\frac{2^{C^2_i}}{(i-1)!}\]
设\(A=\sum\limits_{i=1}^n\dfrac{f_i}{(i-1)!}x^i\),\(B=\sum\limits_{i=0}^{n-1}\dfrac{2^{C_i^2}}{i!}x^i\),\(C=\sum\limits_{i=1}^n\dfrac{2^{C_i^2}}{(i-1)!}x^i\),则
\[A*B=C\]
\[A=C*B^{-1}\]
多项式求逆即可,时间复杂度\(O(nlogn)\)
BZOJ 3456: 城市规划(dp+多项式求逆)的更多相关文章
- BZOJ 3456: 城市规划 与 多项式求逆算法介绍(多项式求逆, dp)
题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减 ...
- BZOJ 3456 城市规划 ( NTT + 多项式求逆 )
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3456 题意: 求出\(n\)个点的简单(无重边无自环)无向连通图的个数.(\(n< ...
- 【BZOJ】3456: 城市规划 动态规划+多项式求逆
[题意]求n个点的带标号无向连通图个数 mod 1004535809.n<=130000. [算法]动态规划+多项式求逆 [题解]设$g_n$表示n个点的无向图个数,那么显然 $$g_n=2^{ ...
- 【bzoj3456】城市规划 dp+多项式求逆
Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或 ...
- 【bzoj3456】城市规划(多项式求逆+dp)
Description 求\(~n~\)个点组成的有标号无向连通图的个数.\(~1 \leq n \leq 13 \times 10 ^ 4~\). Solution 这道题的弱化版是poj1737, ...
- 【BZOJ】3456: 城市规划(多项式求ln)
题解 在我写过分治NTT,多项式求逆之后 我又一次写了多项式求ln 我们定义一个数列的指数型生成函数为 \(\sum_{i = 0}^{n} \frac{A_{i}}{i!} x^{i}\) 然后这个 ...
- CF848E Days of Floral Colours——DP+多项式求逆/分治NTT
官方题解:http://codeforces.com/blog/entry/54233 就是由简入繁 1.序列处理,只考虑一个半圆 2.环形处理(其实这个就是多了旋转同构) 然后基于分割线邻居的跨越与 ...
- 洛谷P4841 城市规划(生成函数 多项式求逆)
题意 链接 Sol Orz yyb 一开始想的是直接设\(f_i\)表示\(i\)个点的无向联通图个数,枚举最后一个联通块转移,发现有一种情况转移不到... 正解是先设\(g(n)\)表示\(n\)个 ...
- BZOJ3456 城市规划 【多项式求逆】
题目链接 BZOJ3456 题解 之前我们用分治\(ntt\)在\(O(nlog^2n)\)的复杂度下做了这题,今天我们使用多项式求逆 设\(f_n\)表示\(n\)个点带标号无向连通图数 设\(g_ ...
随机推荐
- day13—CSS之导航栏
转行学开发,代码100天——2018-03-29 见过这么多网页,没有导航栏的几乎没见过.因此,对导航栏的练习非常之必要. 导航栏的实现,基本上都是通过链接列表实现,即ul->li->a标 ...
- Jquery append() 添加多次同个元素时,只有一次作用,如何解决?
这是一个简单的table <table id="mytable"> <!-- 这里将要动态加载tr数据 --> </table> 这是一个模版t ...
- delphi 手势 识别 哈哈
本例尝试在 OnGesture 事件中响应 sgLeft.sgRight 手势; 操作步骤: 1.加 TGestureManager 控件如窗体: GestureManager1; 2.设置窗体属性 ...
- hdu2602Bone Collector ——动态规划(0/1背包问题)
Problem Description Many years ago , in Teddy’s hometown there was a man who was called “Bone Collec ...
- sourcetree for mac 使用
1.sourceTree clone 仓库 打开sourceTree, 点击 新仓库(1) -> 从url克隆(2), 如下图 如下图所示, 粘贴源url路径, 自动补全或者手动选择目标路径和名 ...
- css负边距布局
三行三列的布局 代码结构 <div class="container"> <ul> <li>1</li> <li>2&l ...
- Deepin 下开启SSH远程登陆
关于deepin下安装ssh以后root用户登陆报错的解决 最近刚刚接触到deepin,觉得,wow,除了mac,还有这么好看的非win系统,而且第测出那个Linux,宽容度很高,非常适合我这种比 ...
- P3914染色计数
题目描述 有一颗\(N\)个节点的树,节点用\(1,2,\cdots,N\)编号.你要给它染色,使得相邻节点的颜色不同.有\(M\)种颜色,用\(1,2,\cdots,M\)编号.每个节点可以染\(M ...
- jquery 操作select,checkbox,radio (整理)
在工作中经经常使用到select,checkbox,radio,今天有点空暇就整理一下,免得以后用的时候还要又一次找. 操作select下拉框 -- 获取值或选中项: 1, $("#sele ...
- 关于自带的sql developer修改java.exe版本的解决办法
第一次安装oracle11gR2后,就很好奇的点了一下,当点击应用程序开发下的sql developer后,就弹出一个窗口,要选择一个java.exe的路径,我就讲本机中的JDK1.7下的java.e ...