一、二叉查找树定义

二叉树每个节点都不能有多于两个的儿子。二叉查找树是特殊的二叉树,对于树中的每个节点X,它的左子树中的所有项的值小于X中的项,而它的右子树中所有项的值大于X中的项。

二叉查找树节点的定义:

private static class BinaryNode<T> {
T element; // 节点的值
BinaryNode<T> left; // 左子节点
BinaryNode<T> right; // 右子节点 public BinaryNode(T element) {
this(element, null, null);
} public BinaryNode(T element, BinaryNode<T> left, BinaryNode<T> right) {
this.element = element;
this.left = left;
this.right = right;
}
}

二、树的遍历

树的三种遍历方式:前序遍历、中序遍历、后序遍历。这里的前中后是相对于根节点而言的:

  • 前序遍历:根节点->左子树->右子树
  • 中序遍历:左子树->根节点->右子树
  • 后序遍历:左子树->右子树->根节点

对于下面这样一棵树,不同的遍历方式结果如下:

前序遍历:ABDGHCEIF

private void preOrder(BinaryNode<T> root) {
if (root == null) {
return;
}
System.out.printf("%d ", root.element);
preOrder(root.left);
preOrder(root.right);
}

中序遍历:GDHBAEICF

private void inOrder(BinaryNode<T> root) {
if (root == null) {
return;
}
inOrder(root.left);
System.out.printf("%d ", root.element);
inOrder(root.right);
}

后序遍历:GHDBIEFCA

private void postOrder(BinaryNode<T> root) {
if (root == null) {
return;
}
postOrder(root.left);
postOrder(root.right);
System.out.printf("%d ", root.element);
}

三、二叉查找树的基本操作

3.1 contains方法

/**
* 判断树t中是否存在含有项x的节点
*
* @param x 值
* @param t 以t为根节点的一棵树
* @return
*/
private boolean contains(T x, BinaryNode<T> t) {
if (t == null) {
return false;
}
int compareResult = x.compareTo(t.element);
if (compareResult < 0) {
return contains(x, t.left);
} else if (compareResult > 0) {
return contains(x, t.right);
} else {
return true;
}
} public boolean contains(T x) {
return contains(x, root);
}

3.2 find方法

/**
* 查找树t中值为x的节点
* @param x
* @param t
* @return
*/
private BinaryNode<T> find(T x, BinaryNode<T> t) {
if (t == null) {
return t;
}
int compareResult = x.compareTo(t.element);
if (compareResult < 0) {
return find(x, t.left);
} else if (compareResult > 0) {
return find(x, t.right);
} else {
return t;
}
} public BinaryNode<T> find(T x) {
return find(x, root);
}

3.3 最大值与最小值

查找树中最大值的节点

private BinaryNode<T> findMax(BinaryNode<T> t) {
if (t == null) {
return null;
}
while (t.right != null) {
t = t.right;
}
return t;
} public BinaryNode<T> findMax() {
return findMax(root);
}

查找树中最小值的节点

private BinaryNode<T> findMin(BinaryNode<T> t) {
if (t == null) {
return null;
}
while (t.left != null) {
t = t.left;
}
return t;
} public BinaryNode<T> findMin() {
return findMin(root);
}

3.4 insert方法

private BinaryNode<T> insert(T x, BinaryNode<T> t) {
if (t == null) {
return new BinaryNode<>(x, null, null);
}
int compareResult = x.compareTo(t.element);
if (compareResult < 0) {
t.left = insert(x, t.left);
} else if (compareResult > 0) {
t.right = insert(x, t.right);
} else {
// 出现重复值,忽略不处理
}
return t;
} public void insert(T x) {
root = insert(x, root);
}

3.5 remove方法

  • 如果需要删除的节点是叶节点,那么可以直接删除;
  • 如果节点有一个儿子,则让儿子节点取代该节点即可;
  • 如果节点有两个儿子,通常用其右子树的最小的数据代替该节点的数据并递归地删除那个节点。

    因为右子树的最小节点不可能有左儿子
public void remove(T x) {
root = remove(x, root);
} private BinaryNode<T> remove(T x, BinaryNode<T> t) {
if (t == null) {
return t;
}
int compareResult = x.compareTo(t.element);
if (compareResult < 0) {
t.left = remove(x, t.left);
} else if (compareResult > 0) {
t.right = remove(x, t.right);
} else if (t.left != null && t.right != null) {
// 用右子树的最小的数据代替该节点的数据并递归地删除这个节点
t.element = findMin(t.right).element;
t.right = remove(t.element, t.right);
} else {
// 只有一个儿子,直接用儿子代替该节点
t = (t.left != null) ? t.left : t.right;
}
return t;
}

Java数据结构与算法(4):二叉查找树的更多相关文章

  1. Java数据结构和算法(七)B+ 树

    Java数据结构和算法(七)B+ 树 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 我们都知道二叉查找树的查找的时间复杂度是 ...

  2. Java数据结构和算法(四)赫夫曼树

    Java数据结构和算法(四)赫夫曼树 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 赫夫曼树又称为最优二叉树,赫夫曼树的一个 ...

  3. java数据结构和算法06(红黑树)

    这一篇我们来看看红黑树,首先说一下我啃红黑树的一点想法,刚开始的时候比较蒙,what?这到底是什么鬼啊?还有这种操作?有好久的时间我都缓不过来,直到我玩了两把王者之后回头一看,好像有点儿意思,所以有的 ...

  4. Java数据结构和算法

    首先,本人自学java,但是只学习了java的基础知识,所以想接下来学习一下数据结构和算法,但是找了很多教材,大部分写的好的都是用c语言实现的,虽然知道数据结构和算法,跟什么语言实现的没有关系,但是我 ...

  5. 【Java数据结构学习笔记之二】Java数据结构与算法之栈(Stack)实现

      本篇是java数据结构与算法的第2篇,从本篇开始我们将来了解栈的设计与实现,以下是本篇的相关知识点: 栈的抽象数据类型 顺序栈的设计与实现 链式栈的设计与实现 栈的应用 栈的抽象数据类型   栈是 ...

  6. Java数据结构和算法(六)——前缀、中缀、后缀表达式

    前面我们介绍了三种数据结构,第一种数组主要用作数据存储,但是后面的两种栈和队列我们说主要作为程序功能实现的辅助工具,其中在介绍栈时我们知道栈可以用来做单词逆序,匹配关键字符等等,那它还有别的什么功能吗 ...

  7. Java数据结构和算法(十四)——堆

    在Java数据结构和算法(五)——队列中我们介绍了优先级队列,优先级队列是一种抽象数据类型(ADT),它提供了删除最大(或最小)关键字值的数据项的方法,插入数据项的方法,优先级队列可以用有序数组来实现 ...

  8. Java数据结构和算法(九)——高级排序

    春晚好看吗?不存在的!!! 在Java数据结构和算法(三)——冒泡.选择.插入排序算法中我们介绍了三种简单的排序算法,它们的时间复杂度大O表示法都是O(N2),如果数据量少,我们还能忍受,但是数据量大 ...

  9. java数据结构与算法之栈(Stack)设计与实现

    本篇是java数据结构与算法的第4篇,从本篇开始我们将来了解栈的设计与实现,以下是本篇的相关知识点: 栈的抽象数据类型 顺序栈的设计与实现 链式栈的设计与实现 栈的应用 栈的抽象数据类型 栈是一种用于 ...

随机推荐

  1. mybatis一级缓存和二级缓存的使用

    在mybatis中,有一级缓存和二级缓存的概念: 一级缓存:一级缓存 Mybatis的一级缓存是指SQLSession,一级缓存的作用域是SQLSession, Mabits默认开启一级缓存.在同一个 ...

  2. CentOS7编译安装sshpass过程

    环境说明:centos 7 cat /etc/redhat-release CentOS Linux release 7.6.1810 (Core) 我的sshpass版本 sshpass-1.06. ...

  3. 数据分析 - 缺失值、异常值、一致性分析方法及Python实现

    1.数据质量分析 数据质量分析主要任务:检查原始数据是否存在脏数据. 脏数据: 缺失值 异常值 不一致的值 重复数据及含有特殊符号(如:#.¥.*)的数据 1.1 缺失值分析 数据缺失主要包括:记录的 ...

  4. 最小生成树: HDU1233还是畅通工程

    还是畅通工程 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  5. J.U.C|一文搞懂AQS(转)

    提到JAVA加锁,我们通常会想到synchronized关键字或者是Java Concurrent Util(后面简称JCU)包下面的Lock,今天就来扒一扒Lock是如何实现的,比如我们可以先提出一 ...

  6. AXI总线协议

    AXI总线协议 (一).概述 AXI (高性能扩展总线接口,Advanced eXtensible Interface)是ARM AMBA 单片机总线系列中的一个协议,是计划用于高性能.高主频的系统设 ...

  7. liunx驱动----信号量的实现

    使用信号量必须包含  <asm/semaphore.h>  头文件.其中相关结构体  struct semaphore 可以通过以下几种方式来声明或者初始化. 1.void sema_in ...

  8. 分布式事务中的2PC和3PC

    分布式事务 分布式事务是指会涉及到操作多个数据库的事务.其实就是将对同一库事务的概念扩大到了对多个库的事务. 分布式事务中需要注意的是分布式系统中存在的一致性问题: CAP原则:在一个分布式系统中,C ...

  9. Qt读写Json

    Qt操作Json 1.QJsonDocument 1.详细说明 QJsonDocument类提供了读写JSON文档的方法. QJsonDocument是一个封装了完整JSON文档的类,可以从基于UTF ...

  10. linux c下的c文件 h文件 o文件 so文件 a文件 可执行文件 gcc使用

    linux下c语言工程: c文件:主要每个模块的原代码都在c文件中. h文件:每个c文件都跟着一个h文件,h文件的作用是放着c文件中函数的声明,结构体的定义,宏的定义等. o文件:目标文件.每个文件经 ...