题面:

维护一个W*W的矩阵,初始值均为S.每次操作可以增加某格子的权值,或询问某子矩阵的总权值.修改操作数M<=160000,询问数Q<=10000,W<=2000000.

Input

第一行两个整数,S,W;其中S为矩阵初始值;W为矩阵大小

接下来每行为一下三种输入之一(不包含引号):

"1 x y a"

"2 x1 y1 x2 y2"

"3"

输入1:你需要把(x,y)(第x行第y列)的格子权值增加a

输入2:你需要求出以左下角为(x1,y1),右上角为(x2,y2)的矩阵内所有格子的权值和,并输出

输入3:表示输入结束

Output

对于每个输入2,输出一行,即输入2的答案

思路:正常思路用树状数组套树状数组,但是w范围过大,开不下。考虑用cdq分治套树状数组。我们用cdq分治对x坐标排序,用树状数组维护y坐标,把询问用差分思想拆分成四个不同的询问即可。

代码:

#include <bits/stdc++.h>
#define LL long long
#define lowbit (x & (-x))
using namespace std;
const int maxn = 200010;
int tot, tot_ans, n;
struct query{
int type, x, y, pos, flag;
};
query q[maxn], tmp[maxn];
int c[maxn * 10], ans[maxn];
void add(int x, int y) {
for (; x <= n; x += lowbit)
c[x] += y;
}
int ask(int x) {
int ans = 0;
for (; x; x-= lowbit) {
ans += c[x];
}
return ans;
}
void clear(int x) {
for (; x <= n; x += lowbit) {
c[x] = 0;
}
}
void cdq(int l, int r) {
if(l == r) return;
int mid = (l + r) >> 1;
cdq(l, mid);
cdq(mid + 1, r);
int l1 = l, l2 = mid + 1, pos = l;
while(l1 <= mid && l2 <= r) {
if(q[l1].x <= q[l2].x) {
if(q[l1].type == 1) {
add(q[l1].y, q[l1].pos);
}
tmp[pos++] = q[l1++];
} else {
if(q[l2].type == 2) {
ans[q[l2].pos] += q[l2].flag * ask(q[l2].y);
}
tmp[pos++] = q[l2++];
}
}
while(l1 <= mid) tmp[pos++] = q[l1++];
while(l2 <= r) {
if(q[l2].type == 2) {
ans[q[l2].pos] += q[l2].flag * ask(q[l2].y);
}
tmp[pos++] = q[l2++];
}
for (int i = l; i <= mid; i++) {
if(q[i].type == 1) {
clear(q[i].y);
}
}
for (int i = l; i <= r; i++)
q[i] = tmp[i];
}
int main() {
int l1, r1, l2, r2, x, op, val;
scanf("%d%d", &x, &n);
while(~scanf("%d", &op) && op != 3) {
if(op == 1) {
scanf("%d%d%d", &l1, &r1, &val);
q[++tot] = (query){1, l1, r1, val, 0};
} else {
scanf("%d%d%d%d", &l1, &r1, &l2, &r2);
tot_ans++;
ans[tot_ans] = x * (l2 - l1 + 1) * (r2 - r1 + 1);
q[++tot] = (query){2, l1 - 1, r1 - 1, tot_ans, 1};
q[++tot] = (query){2, l1 - 1, r2, tot_ans, -1};
q[++tot] = (query){2, l2, r1 - 1, tot_ans, -1};
q[++tot] = (query){2, l2, r2, tot_ans, 1};
}
}
cdq(1, tot);
for (int i = 1; i <= tot_ans; i++) {
printf("%d\n", ans[i]);
}
}

  

bzoj 1176 cdq分治套树状数组的更多相关文章

  1. bzoj2253纸箱堆叠(动态规划+cdq分治套树状数组)

    Description P 工厂是一个生产纸箱的工厂.纸箱生产线在人工输入三个参数 n p a , 之后,即可自动化生产三边边长为 (a mod P,a^2 mod p,a^3 mod P) (a^4 ...

  2. [APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树)

    [APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树) 题面 略 分析 首先把一组询问(x,y)看成二维平面上的一个点,我们想办法用数据结构维护这个二维平面(注意根据题意这 ...

  3. bzoj 4991 [Usaco2017 Feb]Why Did the Cow Cross the Road III(cdq分治,树状数组)

    题目描述 Farmer John is continuing to ponder the issue of cows crossing the road through his farm, intro ...

  4. BZOJ 2716 [Violet 3]天使玩偶 (CDQ分治、树状数组)

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2716 怎么KD树跑得都那么快啊..我写的CDQ分治被暴虐 做四遍CDQ分治,每次求一个 ...

  5. 【BZOJ4285】使者 cdq分治+扫描线+树状数组

    [BZOJ4285]使者 Description 公元 8192 年,人类进入星际大航海时代.在不懈的努力之下,人类占领了宇宙中的 n 个行星,并在这些行星之间修建了 n - 1 条星际航道,使得任意 ...

  6. 【CJOJ2616】 【HZOI 2016】偏序 I(cdq分治,树状数组)

    传送门 CJOJ Solution 考虑这是一个四维偏序对吧. 直接cdq套在一起,然后这题有两种实现方法(树状数组的更快!) 代码实现1(cdq+cdq+cdq) /* mail: mleautom ...

  7. HDU 5618 Jam's problem again(三维偏序,CDQ分治,树状数组,线段树)

    Jam's problem again Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  8. UVA 11990 `Dynamic'' Inversion CDQ分治, 归并排序, 树状数组, 尺取法, 三偏序统计 难度: 2

    题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...

  9. 【模板】cdq分治代替树状数组(单点修改,区间查询)

    #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #in ...

随机推荐

  1. IT路上可能遇到的小需求资源汇总

    jar文件打包为window service tomcat打包为window service springboot的jar包打包为window service

  2. 线程池(ThreadPool)创建

    线程池创建方式jdk1.5 Java通过Executors(jdk1.5并发包)提供四种线程池,分别为: newCachedThreadPool创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活 ...

  3. oracle多表连接方式Hash Join Nested Loop Join Merge Join

    在查看sql执行计划时,我们会发现表的连接方式有多种,本文对表的连接方式进行介绍以便更好看懂执行计划和理解sql执行原理. 一.连接方式:        嵌套循环(Nested  Loops (NL) ...

  4. 《嵌入式软件设计基础——基于ARM Cortex—M3》读书笔记

    此书有点深,记录点自己能够看懂的. 1.内存管理一章:讲到变量的类型.生存周期.内存分配. auto static register 局部变量,全局变量 malloc free 内存碎片,消除内存池的 ...

  5. app、web其他测试点

  6. tomcat启动一闪而过处理

    进入tomcat安装目录(解压目录)下的bin目录,比如D:\Tomcat1\apache-tomcat-7.0.810\bin,打开startup.bat文件,在最上面加上下面两句: SET JAV ...

  7. 媲美5G的Wifi网速、“备战”资产一键领……揭秘双11小二背后的保障力量

    如今,双11不光是购物狂欢节,更是对技术的一次“大考”,对于阿里巴巴企业内部运营的基础保障技术而言,亦是如此. 回溯双11历史,这背后也经历过“小米加步枪”的阶段:作战室从随处是网线,交换机放地上的“ ...

  8. 线性规划(Simplex单纯形)与对偶问题

    线性规划 首先一般所有的线性规划问题我们都可以转换成如下标准型: 但是我们可以发现上面都是不等式,而我们计算中更希望是等式,所以我们引入这个新的概念:松弛型: 很显然我们最后要求是所有的约束左边的变量 ...

  9. bugku | login2(SKCTF) 200

    在响应包里面发现tips,base64解码后看到提示信息: $sql="SELECT username,password FROM admin WHERE username='". ...

  10. STL双端队列 deque

    头文件:#include<deque> 构造方法: ①.创建一个没有任何元素的双端队列:deque<type> deq ②.用另一个类型相同双端队列初始化该双端队列:deque ...