#[Shoi2010]最小生成树
####Time Limit: 10 Sec Memory Limit: 128 MB
###Description
Secsa最近对最小生成树问题特别感兴趣。他已经知道如果要去求出一个n个点、m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法。另外,他还知道,某一个图可能有多种不同的最小生成树。例如,下面图 3中所示的都是图 2中的无向图的最小生成树:

当然啦,这些都不是今天需要你解决的问题。Secsa想知道对于某一条无向图中的边AB,至少需要多少代价可以保证AB边在这个无向图的最小生成树中。为了使得AB边一定在最小生成树中,你可以对这个无向图进行操作,一次单独的操作是指:先选择一条图中的边 P1P2,再把图中除了这条边以外的边,每一条的权值都减少1。如图 4所示就是一次这样的操作:

###Input
输入文件的第一行有3个正整数n、m、Lab分别表示无向图中的点数、边数、必须要在最小生成树中出现的AB边的标号。
接下来m行依次描述标号为1,2,3…m的无向边,每行描述一条边。每个描述包含3个整数x、y、d,表示这条边连接着标号为x、y的点,且这条边的权值为d。
输入文件保证1<=x,y<=N,x不等于y,且输入数据保证这个无向图一定是一个连通图。
###Output
输出文件只有一行,这行只有一个整数,即,使得标号为Lab边一定出现最小生成树中的最少操作次数。

###Sample Input
4 6 1

1 2 2

1 3 2

1 4 3

2 3 2

2 4 4

3 4 5

###Sample Output
1
###HINT
第1个样例就是问题描述中的例子。

1<=n<=500,1<=M<=800,1<=D<10^6

首先kruskal瞎贪心过一会你就凉了。。。
例子:
1 2 2
2 1 2
1 3 1
2 3 6
强行6的边
所以你需要网络流。。。
因为你的目标是kruskal在你之前不连通,所以模拟这个过程,每条边权小于 (k+1)的边都建一条 (k+1-val) 的无向边。。。
然后网络流


#include<bits/stdc++.h>
using namespace std;
struct lpl{
int to, dis;
}lin;
const int maxn = 505, maxm = 805, INF = 0x7fffffff;
int cnt = -1, n, m, s, t, f, opt, A[maxm], B[maxm], val[maxm];
int layer[maxn];
vector<int> point[maxn];
vector<lpl> edge;
queue<int> q; inline void connect(int a, int b, int c)
{
cnt++; lin.to = b; lin.dis = c; point[a].push_back(cnt); edge.push_back(lin);
cnt++; lin.to = a; lin.dis = c; point[b].push_back(cnt); edge.push_back(lin);
} inline void putit()
{
scanf("%d%d%d", &n, &m, &opt);
for(int i = 1; i <= m; ++i) scanf("%d%d%d", &A[i], &B[i], &val[i]);
s = A[opt], t = B[opt], f = val[opt]; f++;
for(int i = 1; i <= m; ++i){
if(val[i] >= f) continue;
if(i == opt) continue;
connect(A[i], B[i], f - val[i]);
}
} inline bool bfs()
{
int now, qwe; memset(layer, 0, sizeof(layer));
q.push(s); layer[s] = 1;
while(!q.empty()){
now = q.front(); q.pop();
for(int i = point[now].size() - 1; i >= 0; --i){
qwe = edge[point[now][i]].to;
if(layer[qwe] || edge[point[now][i]].dis <= 0) continue;
layer[qwe] = layer[now] + 1; q.push(qwe);
}
}
return layer[t];
} int dfs(int a, int w)
{
if(w == 0 || a == t) return w;
int ret = 0;
for(int i = point[a].size() - 1; i >= 0; --i){
int now = point[a][i];
if(edge[now].dis <= 0 || layer[edge[now].to] != layer[a] + 1) continue;
int tmp = dfs(edge[now].to, min(edge[now].dis, w));
ret += tmp; edge[now].dis -= tmp; edge[now ^ 1].dis += tmp; w -= tmp;
if(!w) break;
}
return ret;
} inline int Dinic()
{
int ret = 0;
while(bfs()) ret += dfs(s, INF);
return ret;
} int main()
{
putit();
cout << Dinic();
return 0;
}

bzoj2521 [Shoi2010]最小生成树的更多相关文章

  1. BZOJ2521:[SHOI2010]最小生成树(最小割)

    Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可 ...

  2. BZOJ2521[Shoi2010]最小生成树——最小割

    题目描述 Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可能有多种不同的 ...

  3. 【BZOJ2521】[Shoi2010]最小生成树 最小割

    [BZOJ2521][Shoi2010]最小生成树 Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算 ...

  4. 【BZOJ-2521】最小生成树 最小割

    2521: [Shoi2010]最小生成树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 415  Solved: 242[Submit][Statu ...

  5. BZOJ 2521: [Shoi2010]最小生成树

    2521: [Shoi2010]最小生成树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 445  Solved: 262[Submit][Statu ...

  6. 【bzoj2521】[Shoi2010]最小生成树 网络流最小割

    题目描述 Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可能有多种不同的 ...

  7. 【BZOJ2521】 [Shoi2010]最小生成树

    Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可 ...

  8. BZOJ 2521: [Shoi2010]最小生成树(最小割)

    题意 对于某一条无向图中的指定边 \((a, b)\) , 求出至少需要多少次操作.可以保证 \((a, b)\) 边在这个无向图的最小生成树中. 一次操作指: 先选择一条图中的边 \((u, v)\ ...

  9. BZOJ.2521.[SHOI2010]最小生成树(最小割ISAP/Dinic)

    题目链接 一条边不变其它边减少可以看做一条边增加其它边不变. 假设要加的边lab为(A->B,v),那么肯定是要使除这条边外,A->B的每条路径上的最小权值都\(>v\),这样在连通 ...

随机推荐

  1. OS库的使用

    Python中有关OS库的使用 路径操作 os.path.abspath(path) 返回path在当前系统中的绝对路径 os.path.normpath(path) 归一化path的表示形式,统一用 ...

  2. TCP协议之三次握手四次挥手

    一.TCP协议简述 TCP协议位于传输层用来建立传输数据的通道以及传输数据,那么在这一层的tcp协议就涉及到客户端与服务端通信的连接,数据的传输.关闭连接. 通信的连接使用的就是客户端与服务端的三次握 ...

  3. javascript 回到顶部效果的实现

    demo.js window.onload=function() { var timer=null; var obtn=document.getElementById('btn'); var isTo ...

  4. 前后端分离下的CAS跨域流程分析

    写在最前 前后端分离其实有两类: 开发阶段使用dev-server,生产阶段是打包成静态文件整个放入后端项目中. 开发阶段使用dev-server,生产阶段是打包成静态文件放入单独的静态资源服务器中, ...

  5. 亲测可用的golang sql例程与包管理

    sqlite与golang package main import ( "database/sql" "fmt" "time" _ &quo ...

  6. Joyoshare HEIC Converter for Mac将HEIC照片转换成其他格式的方法

    如何把HEIC格式的照片转换成其JPEG,PNG,GIF他格式呢?使用Joyoshare HEIC Converter for Mac破解版就可以,Joyoshare HEIC Converter是可 ...

  7. make编写教程(一)

    1. make规则 如果工程没有被编译过,则所有的c文件都要编译和链接 如果工程的某几个c文件被修改,那么只编译被修改的文件,并链接目标程序 如果工程的头文件被修改,需要编译引用了此头文件的c文件,并 ...

  8. 企业打开云HBase的正确方式,来自阿里云云数据库团队的解读

    一.HBase的历史由来 HBase是一个开源的非关系型分布式数据库(NoSQL),基于谷歌的BigTable建模,是一个高可靠性.高性能.高伸缩的分布式存储系统,使用HBase技术可在廉价PC Se ...

  9. 看图了解RocksDB

    它是一个高性能的Key-Value数据库.设计了完善的持久化机制,同时保证性能和安全性.能够良好的支持范围查询,因为K-V记录就是按照Key来排序的. 下图为写入的流程: ​ 可以看到主要的三个组成部 ...

  10. 4412 使用小度wifi

    本文转载至:https://blog.csdn.net/robertsong2004/article/details/42985223 作者:刘老师,华清远见嵌入式学院讲师. FS_4412可以同链接 ...