Problem Statement

    

A well-known riddle goes like this: Four people are crossing an old bridge. The bridge cannot hold more than two people at once. It is dark, so they can't walk without a flashlight, and they only have one flashlight! Furthermore, the time needed to cross the bridge varies among the people in the group. For instance, let's say that the people take 1, 2, 5 and 10 minutes to cross the bridge. When people walk together, they always walk at the speed of the slowest person. It is impossible to toss the flashlight across the bridge, so one person always has to go back with the flashlight to the others. What is the minimum amount of time needed to get all the people across the bridge?

In this instance, the answer is 17. Person number 1 and 2 cross the bridge together, spending 2 minutes. Then person 1 goes back with the flashlight, spending an additional one minute. Then person 3 and 4 cross the bridge together, spending 10 minutes. Person 2 goes back with the flashlight (2 min), and person 1 and 2 cross the bridge together (2 min). This yields a total of 2+1+10+2+2 = 17 minutes spent.

You want to create a computer program to help you solve new instances of this problem. Given an int[] times, where the elements represent the time each person spends on a crossing, your program should return the minimum possible amount of time spent crossing the bridge.

Definition

    
Class: BridgeCrossing
Method: minTime
Parameters: int[]
Returns: int
Method signature: int minTime(int[] times)
(be sure your method is public)

Limits

    
Time limit (s): 2.000
Memory limit (MB): 64

Notes

- In an optimal solution, exactly two people will be sent across the bridge with the flashlight each time (if possible), and exactly one person will be sent back with the flashlight each time. In other words, in an optimal solution, you will never send more than one person back from the far side at a time, and you will never send less than two people across to the far side each time (when possible).

Constraints

- times will have between 1 and 6 elements, inclusive.
- Each element of times will be between 1 and 100, inclusive.

Examples

0)  
    
{ 1, 2, 5, 10 }
Returns: 17
The example from the text.
1)  
    
{ 1, 2, 3, 4, 5 }
Returns: 16
One solution is: 1 and 2 cross together (2min), 1 goes back (1min), 4 and 5 cross together (5min), 2 goes back (2min), 1 and 3 cross together (3min), 1 goes back (1min), 1 and 2 cross together (2min). This yields a total of 2 + 1 + 5 + 2 + 3 + 1 + 2 = 16 minutes spent.
2)  
    
{ 100 }
Returns: 100
Only one person crosses the bridge once.
3)  
    
{ 1, 2, 3, 50, 99, 100 }
Returns: 162
 

This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.

开始时从right中取得最小值回到left使用Arrays.sort排序后选择rigth[0],显然会对数组顺序产生影响,导致后续遍历出错

 import java.util.*;
import java.util.regex.*;
import java.text.*;
import java.math.*;
import java.awt.geom.*; public class BridgeCrossing {
private int dfs(int[] left, int[] right) {
if (left.length <= 2) {
Arrays.sort(left);
return left[left.length - 1];
}
int min = Integer.MAX_VALUE;
for (int i = 0; i < left.length - 1; i++) {
for (int j = i + 1; j < left.length; j++) {
int[] lt = new int[left.length - 1];
int p = 0;
int[] rt = new int[right.length + 1];
int q = 0;
p = 0;
for (int k = 0; k < left.length; k++) {
if (k != i && k != j) {
lt[p] = left[k];
p++;
}
}
right[right.length - 1] = left[i];
right[right.length - 2] = left[j];
int tmp = left[i] > left[j] ? left[i] : left[j];
int lm = 0;
for (int k = 1; k < right.length; k++) {
if (right[k] < right[lm])
lm = k;
}
tmp += right[lm];
lt[p] = right[lm];
q = 0;
for (int k = 0; k < right.length; k++) {
if (lm != k) {
rt[q] = right[k];
q++;
}
} tmp += dfs(lt, rt);
if (tmp < min)
min = tmp;
}
}
return min;
} public int minTime(int[] times) {
return dfs(times, new int[2]);
}
}

SRM 146 DIV2 1000的更多相关文章

  1. Topcoder Srm 673 Div2 1000 BearPermutations2

    \(>Topcoder \space Srm \space 673 \space Div2 \space 1000 \space BearPermutations2<\) 题目大意 : 对 ...

  2. Topcoder Srm 671 Div2 1000 BearDestroysDiv2

    \(>Topcoder \space Srm \space 671 \space Div2 \space 1000 \space BearDestroysDiv2<\) 题目大意 : 有一 ...

  3. SRM 595 DIV2 1000

    数位DP的感觉,但是跟模版不是一个套路的,看的题解,代码好理解,但是确实难想. #include <cstdio> #include <cstring> #include &l ...

  4. TC SRM 593 DIV2 1000

    很棒的DP,不过没想出,看题解了..思维很重要. #include <iostream> #include <cstdio> #include <cstring> ...

  5. TC SRM 591 DIV2 1000

    很不错的一题,非常巧妙的用DP顺序解决这个问题... 可以发现,只和A里面最小的有关系... #include <cstdio> #include <cstring> #inc ...

  6. TopCoder SRM 660 Div2 Problem 1000 Powerit (积性函数)

    令$f(x) = x^{2^{k}-1}$,我们可以在$O(k)$的时间内求出$f(x)$. 如果对$1$到$n$都跑一遍这个求解过程,时间复杂度$O(kn)$,在规定时间内无法通过. 所以需要优化. ...

  7. TopCoder SRM 301 Div2 Problem 1000 CorrectingParenthesization(区间DP)

    题意  给定一个长度为偶数的字符串.这个字符串由三种括号组成. 现在要把这个字符串修改为一个符合括号完全匹配的字符串,改变一个括号的代价为$1$,求最小总代价. 区间DP.令$dp[i][j]$为把子 ...

  8. SRM 657 DIV2

    -------一直想打SRM,但是感觉Topcoder用起来太麻烦了.题目还是英文,不过没什么事干还是来打一打好了.但是刚注册的号只能打DIV2,反正我这么弱也只适合DIV2了.. T1: 题目大意: ...

  9. SRM 638 Div2

    2333... 因为TC过少的参与者.加上不断fst 我掉了div2该. 幸运的是完成的背div1该.. 250 水的问题 500 水的问题.. 直接bfs扩展即可了 注意判重.  我还用康托展开了真 ...

随机推荐

  1. float、定位、inline-block、兼容性需注意的特性总结

    inline-block 特性: 1.块在一排显示 2.内联支持宽高 3.默认内容撑开宽度 4.标签之间的换行间隙被解析(问题)[相当字体大小的一半] 5.ie6 ie7不支持块属性标签的inline ...

  2. Windows Server 2012 克隆修改SID

    更改SID后蓝屏\黑屏: 环境:Windows Server 2012 R2 目的:克隆出来的系统的SID都是一样,所以想修改各个系统的SID号 现象:克隆出来的系统的SID都是一样,所以想修改各个系 ...

  3. 缓存AsimpleCache -- 解决Android中Sharedpreferences无法存储List数据/ASimpleCache

    Sharedpreferences想必大家在项目中都经常会用到,但是如果需要在本地需要存储比较多的数据,存储一个集合的时,发现Sharedpreferences并不 是那么好使了. 分析 如果需要在本 ...

  4. 如何使用Math对象快速计算数组中的最大值或最小值

    Math 对象下包含 min() 和 max() 方法 用于确定一组数值中的最大值和最小值.这两个方法都可以接收任意多个数值参数. var max = Math.max(1,2,3,4,5,6); c ...

  5. Android RelativeLayout用到的一些重要的属性

    转载自 http://mobile.51cto.com/android-265842.htm 第一类:属性值为true或false android:layout_centerHrizontal  水平 ...

  6. I prefer fcitx

    sudo add-apt-repository ppa:fcitx-team/nightly sudo apt-get update Then, you should install Fcitx.Fc ...

  7. webpack 往右一点之 “你好,初次见面”

    webpack  模块打包器 模块化工具的目标: 将依赖树拆分成按需加载的块 初始化加载的耗时尽量少 各种静态资源都可以视作模块 将第三方库整合成模块 自定义打包逻辑 适合大项目

  8. 2.2 ARM处理器工作模式

    ARM Architecture Reference Manual Arm 指令框架手册 种工作模式 Processor mode Mode number Description User usr 0 ...

  9. clientWidth、offsetWidth和scrollWidth的区分

    scrollWidth:对象的实际内容的宽度,不包边线宽度,会随对象中内容超过可视区后而变大. clientWidth:对象内容的可视区的宽度,不包滚动条等边线,会随对象显示大小的变化而改变. off ...

  10. Spark Streaming源码解读之Driver容错安全性

    本期内容 : ReceivedBlockTracker容错安全性 DStreamGraph和JobGenerator容错安全性 Driver的安全性主要从Spark Streaming自己运行机制的角 ...