树状数组套主席树模板题。。。

题目大意:

给定一个含有n个数的序列a[1],a[2],a[3]……a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+2]……a[j]中第k小的数是多少(1≤k≤j-i+1),并且,你可以改变一些a[i]的值,改变后,程序还能针对改变后的a继续回答上面的问题。你需要编一个这样的程序,从输入文件中读入序列a,然后读入一系列的指令,包括询问指令和修改指令。对于每一个询问指令,你必须输出正确的回答。 第一行有两个正整数n(1≤n≤10000),m(1≤m≤10000)。分别表示序列的长度和指令的个数。第二行有n个数,表示a[1],a[2]……a[n],这些数都小于10^9。接下来的m行描述每条指令,每行的格式是下面两种格式中的一种。 Q i j k 或者 C i t Q i j k (i,j,k是数字,1≤i≤j≤n, 1≤k≤j-i+1)表示询问指令,询问a[i],a[i+1]……a[j]中第k小的数。C i t (1≤i≤n,0≤t≤10^9)表示把a[i]改变成为t。

思路:

这题可以整体二分做。可以看他的做法:http://blog.csdn.net/coldef/article/details/53843459

如果没有修改操作,显然主席树就可以解决。但有了修改操作,因为主席树每个节点都和前面的节点有关,所以暴力修改是O(n*logn)的,显然会超时。所以要用到树状数组套主席树。

我们不再是一个节点有连向前面的节点的边,而是在原来的基础上修改(原来的节点不保存)。在主席树外面套一层树状数组,这样每个节点的值只需要查询一遍树状数组就可以了。修改是O(logn)的。

还要离散a数组的值。

具体看代码

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
inline char Nc(){
static char buf[],*p1=buf,*p2=buf;
if(p1==p2){
p2=(p1=buf)+fread(buf,,,stdin);
if(p1==p2)return EOF;
}
return *p1++;
}
inline void Read(int& x){
char c=Nc();
for(;c<''||c>'';c=Nc());
for(x=;c>=''&&c<='';x=(x<<)+(x<<)+c-,c=Nc());
}
inline void Read(char& C){
char c=Nc();
while(c!='Q'&&c!='C')c=Nc();
C=c;
}
#define N 10001
struct Gj{
int l,r,w;
}c[N*];
struct Job{
int x,y,k;
}b[N];
int Rt[N],i,j,k,n,m,x,y,Hash[N<<],Tot=,Num,a[N],s[N<<],S,L[N],R[N],l1,l2;
char C;
bool f[N];
inline int Lowbit(int x){
return x&-x;
}
inline int Find(int x){
int l=,r=Tot,Mid;
while(l<=r){
Mid=l+r>>;
if(x>Hash[Mid])l=Mid+;else r=Mid-;
}
return l;
}
inline void Update(int& Node,int l,int r,int Last,int x,int y){
c[++Num]=c[Last];Node=Num;
c[Node].w+=y;
if(l==r)return;
int Mid=l+r>>;
if(x<=Mid)Update(c[Node].l,l,Mid,c[Last].l,x,y);else Update(c[Node].r,Mid+,r,c[Last].r,x,y);
}
inline int Query(int l,int r,int k){
if(l==r)return l;
int Sum=,Mid=l+r>>;
for(int i=;i<=l1;i++)Sum-=c[c[L[i]].l].w;
for(int i=;i<=l2;i++)Sum+=c[c[R[i]].l].w;
if(Sum>=k){
for(int i=;i<=l1;i++)L[i]=c[L[i]].l;
for(int i=;i<=l2;i++)R[i]=c[R[i]].l;
return Query(l,Mid,k);
}else{
for(int i=;i<=l1;i++)L[i]=c[L[i]].r;
for(int i=;i<=l2;i++)R[i]=c[R[i]].r;
return Query(Mid+,r,k-Sum);
}
}
char Ss[];
int Len;
inline void Print(int x){
if(x==){
putchar('');putchar('\n');
return;
}
for(Len=;x;x/=)Ss[++Len]=x%;
for(;Len;)putchar(Ss[Len--]+);
putchar('\n');
}
int main()
{
Read(n);Read(m);
for(i=;i<=n;i++)Read(a[i]),s[++S]=a[i];
for(i=;i<=m;i++){
Read(C);Read(b[i].x);Read(b[i].y);
if(C=='Q'){
Read(b[i].k);
b[i].x--;f[i]=;
}else s[++S]=b[i].y;
}
sort(s+,s+S+);
Hash[]=s[];
for(i=;i<=S;i++)
if(s[i]!=s[i-])Hash[++Tot]=s[i];
for(i=;i<=n;i++){
x=Find(a[i]);
for(j=i;j<=n;j+=Lowbit(j))Update(Rt[j],,Tot,Rt[j],x,);
}
for(i=;i<=m;i++)
if(!f[i]){
x=Find(a[b[i].x]);
for(j=b[i].x;j<=n;j+=Lowbit(j))Update(Rt[j],,Tot,Rt[j],x,-);
a[b[i].x]=b[i].y;
x=Find(b[i].y);
for(j=b[i].x;j<=n;j+=Lowbit(j))Update(Rt[j],,Tot,Rt[j],x,);
}else{
l1=l2=;
for(j=b[i].x;j;j-=Lowbit(j))L[++l1]=Rt[j];
for(j=b[i].y;j;j-=Lowbit(j))R[++l2]=Rt[j];
Print(Hash[Query(,Tot,b[i].k)]);
}
return ;
}

bzoj1901

bzoj1901--树状数组套主席树的更多相关文章

  1. BZOJ 3196 Tyvj 1730 二逼平衡树 ——树状数组套主席树

    [题目分析] 听说是树套树.(雾) 怒写树状数组套主席树,然后就Rank1了.23333 单点修改,区间查询+k大数查询=树状数组套主席树. [代码] #include <cstdio> ...

  2. BZOJ 1901 Zju2112 Dynamic Rankings ——树状数组套主席树

    [题目分析] BZOJ这个题目抄的挺霸气. 主席树是第一时间想到的,但是修改又很麻烦. 看了别人的题解,原来还是可以用均摊的思想,用树状数组套主席树. 学到了新的姿势,2333o(* ̄▽ ̄*)ブ [代 ...

  3. BZOJ_3196_Tyvj 1730 二逼平衡树_树状数组套主席树

    BZOJ_3196_Tyvj 1730 二逼平衡树_树状数组套主席树 Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排 ...

  4. ZOJ 2112 Dynamic Rankings(树状数组套主席树 可修改区间第k小)题解

    题意:求区间第k小,节点可修改 思路:如果直接用静态第k小去做,显然我更改一个节点后,后面的树都要改,这个复杂度太高.那么我们想到树状数组思路,树状数组是求前缀和,那么我们可以用树状数组套主席树,求出 ...

  5. P2617 Dynamic Rankings(树状数组套主席树)

    P2617 Dynamic Rankings 单点修改,区间查询第k大 当然是无脑树套树了~ 树状数组套主席树就好辣 #include<iostream> #include<cstd ...

  6. [COGS257]动态排名系统 树状数组套主席树

    257. 动态排名系统 时间限制:5 s   内存限制:512 MB [问题描述]给定一个长度为N的已知序列A[i](1<=i<=N),要求维护这个序列,能够支持以下两种操作:1.查询A[ ...

  7. BZOJ 2141 排队(树状数组套主席树)

    解法很多的题,可以块套树状数组,可以线段树套平衡树.我用的是树状数组套主席树. 题意:给出一段数列,m次操作,每次操作是交换两个位置的数,求每次操作后的逆序对数.(n,m<=2e4). 对于没有 ...

  8. 洛谷P3759 [TJOI2017]不勤劳的图书管理员 【树状数组套主席树】

    题目链接 洛谷P3759 题解 树状数组套主席树板题 #include<algorithm> #include<iostream> #include<cstring> ...

  9. Codeforces Round #404 (Div. 2) E. Anton and Permutation(树状数组套主席树 求出指定数的排名)

    E. Anton and Permutation time limit per test 4 seconds memory limit per test 512 megabytes input sta ...

  10. 【Luogu】P2617Dynamic Ranking(树状数组套主席树)

    题目链接 树状数组套主席树有点难懂qwq 不好理解 树状数组套主席树的直观理解应该是:树状数组的每一个节点是一棵主席树. 普通区间修改我们是创建1个线段树,树状数组套主席树的时候我们就创建log个线段 ...

随机推荐

  1. App开发:模拟服务器数据接口 - MockApi

    为了方便app开发过程中,不受服务器接口的限制,便于客户端功能的快速测试,可以在客户端实现一个模拟服务器数据接口的MockApi模块.本篇文章就尝试为使用gradle的android项目设计实现Moc ...

  2. NodeJs之调试

    关于调试 当我们只专注于前端的时候,我们习惯性F12,这会给我们带来安全与舒心的感觉. 但是当我们使用NodeJs来开发后台的时候,我想噩梦来了. 但是也别泰国担心,NodeJs的调试是很不方便!这是 ...

  3. WPF 微信 MVVM 【续】发送部分QQ表情

    今天主要记录的就是发送QQ表情, WPF 微信 MVVM里写了,后期为了发送QQ表情,需要把TextBox替换为RichTextBox,接下来就说说替换的过程. 一.支持Binding的RichTex ...

  4. Android 自定义 attr

    好纠结,弄了一个下午老是报错如是总结一下安卓自定视图和自定义属性. (一)自定义属性 在Values文件下建立一个attrs.xml文件,attr的format可以参考:http://www.cnbl ...

  5. JDK动态代理

    一.基本概念 1.什么是代理? 在阐述JDK动态代理之前,我们很有必要先来弄明白代理的概念.代理这个词本身并不是计算机专用术语,它是生活中一个常用的概念.这里引用维基百科上的一句话对代理进行定义: A ...

  6. log4net使用手册

    1. log4net简介 log4net是.Net下一个非常优秀的开源日志记录组件.log4net记录日志的功能非常强大.它可以将日志分不同的等级,以不同的格式,输出到不同的媒介.Java平台下,它还 ...

  7. DOM的小练习,两个表格之间数据的移动

    本次讲的是两个表格之间数据的移动,左边的表格移动到右边,并且左边表格移动内容消失. <head>   <meta http-equiv="Content-Type" ...

  8. JavaScript事件代理和委托(Delegation)

    JavaScript事件代理 首先介绍一下JavaScript的事件代理.事件代理在JS世界中一个非常有用也很有趣的功能.当我们需要对很多元素添加事件的时候,可以通过将事件添加到它们的父节点而将事件委 ...

  9. 页面布局class常见命名规范

    头:header 内容:content/container 尾:footer 导航:nav 侧栏:sidebar 栏目:column 页面外围控制整体布局宽度:wrapper 左右中:left rig ...

  10. 简单酷炫的canvas动画

    作为一个新人怀着激动而紧张的心情写了第一篇帖子还请大家多多支持,小弟在次拜谢. 驯鹿拉圣诞老人动画效果图如下 html如下: <div style="width:400px;heigh ...