全基因组关联分析流程:


一、准备plink文件


1、准备PED文件


PED文件至少有六列,内容如下:


Family ID


Individual ID


Paternal ID


Maternal ID


Sex (1=male; 2=female; other=unknown)


Phenotype(-9 missing 0 missing 1 unaffected 2 affected)

genotype( 1,2,3,4 or A,C,G,T missing 0)

PED文件是空格(空格或制表符)分隔的文件。


PED文件长这个样:



2、准备MAP文件


MAP文件有四列,四列内容如下:


chromosome (1-22, X, Y or 0 if unplaced)


rs# or snp identifier


Genetic distance (morgans)


Base-pair position (bp units)


MAP文件长这个样:


3、生成bed、fam、bim、文件


输入命令

plink --file mydata --out mydata --make-bed

注:plink指的是plink软件,如果软件安装在某个指定的路径的话,前面还要加上路径,比如安装在路径为/your/pathway/的文件夹下,则命令应该为“/your/pathway/plink --file mydata --out mydata --make-bed”


mydata指的是1和2生成的PED和MAP文件名,不需要写.ped和.map后缀


二、准备表型文件(Alternate phenotype files)


一般表型文件为txt格式,表型文件有三列,分别为:


Family ID


Individual ID


Phenotype


假如有多种表型,第一列和第二列还是Family ID、Individual ID,第三列及以后的每列都是表型,例如以下:


Family ID


Individual ID


Phenotype A


Phenotype B


Phenotype C


Phenotype D


Phenotype E


……


表型文件长这样:

缺失值的处理:缺失值的表型用-9表示;
case和control的处理:通常情况下,1表示control,2表示case,0表示缺失,但如果你加上--1的参数,则0表示control,1表示case。

三、准备协变量文件(Covariate files)


协变量文件同表型文件类似,第一列和第二列是Family ID、Individual ID,第三列及以后的每列都是协变量


Family ID


Individual ID


Covariate A


Covariate B


Covariate C


Covariate D


Covariate E


……


协变量文件长这个样(这里有三个协变量,分别为Sex,Age,temperature):



四、plink进行表型和基因型以及协变量的关联分析


命令如下:

plink --bfile mydata --linear --pheno pheno.txt --mpheno 1 --covar covar.txt --covar-number 1,2,3 --out mydata –noweb

生成的文件为mydata.assoc.linear


注:“mydata”mydata文件不需要后缀,“--mpheno 1”指的是表型文件的第三列(即第一个表型)


“--covar-number 1,2,3”指的是协变量文件的第三列、第四列、第五列(即第一个、第二个、第三个协变量)


“--linear”指的是用的连续型线性回归,如果表型为二项式(即0、1)类型,则用“--logistic”

五、画曼哈顿图


安装R语言的CpGassoc包,其中的manhattan(),即可画曼哈顿图,或者参照本文R语言画全基因组关联分析中的曼哈顿图(manhattan plot)

 

全基因组关联分析(Genome-Wide Association Study,GWAS)流程的更多相关文章

  1. GWAS 全基因组关联分析 | summary statistic 概括统计 | meta-analysis 综合分析

    有很多概念需要明确区分: 人有23对染色体,其中22对常染色体autosome,另外一对为性染色体sex chromosome,XX为女,XY为男. 染色体区带命名:在标示一特定的带时需要包括4项:① ...

  2. 【GWAS文献解读】疟原虫青蒿素抗药性的全基因组关联分析

    英文名:Genetic architecture of artemisinin-resistant Plasmodium falciparum 中文名:疟原虫青蒿素抗药性的全基因组关联分析 期刊:Na ...

  3. 全基因组关联分析(GWAS)的计算原理

    前言 关于全基因组关联分析(GWAS)原理的资料,网上有很多. 这也是我写了这么多GWAS的软件教程,却从来没有写过GWAS计算原理的原因. 恰巧之前微博上某位小可爱提问能否写一下GWAS的计算原理. ...

  4. GWAS | 全基因组关联分析 | Linkage disequilibrium (LD)连锁不平衡 | 曼哈顿图 Manhattan_plot | QQ_plot | haplotype phasing

    现在GWAS已经属于比较古老的技术了,主要是碰到严重的瓶颈了,单纯的snp与表现的关联已经不够,需要具体的生物学解释,这些snp是如何具体导致疾病的发生的. 而且,大多数病找到的都不是个别显著的snp ...

  5. 全基因组关联分析(GWAS):为何我的QQ图那么飘

    前段时间有位小可爱问我,为什么她的QQ图特别飘,如果你不理解怎样算飘,请看下图: 理想的QQ图应该是这样的: 我当时的第一反应是:1)群体分层造成的:2)表型分布有问题.因此让她检查一下数据的群体分层 ...

  6. 一行命令学会全基因组关联分析(GWAS)的meta分析

    为什么需要做meta分析 群体分层是GWAS研究中一个比较常见的假阳性来源. 也就是说,如果数据存在群体分层,却不加以控制,那么很容易得到一堆假阳性位点. 当群体出现分层时,常规手段就是将分层的群体独 ...

  7. 全基因组关联分析(GWAS)扫不出信号怎么办(文献解读)

    假如你的GWAS结果出现如下图的时候,怎么办呢?GWAS没有如预期般的扫出完美的显著信号,也就没法继续发挥后续研究的套路了. 最近,nature发表了一篇文献“Common genetic varia ...

  8. R语言画全基因组关联分析中的曼哈顿图(manhattan plot)

    1.在linux中安装好R 2.准备好画曼哈顿图的R脚本即manhattan.r,manhattan.r内容如下: #!/usr/bin/Rscript #example : Rscript plot ...

  9. 全基因组关联分析学习资料(GWAS tutorial)

    前言 很多人问我有没有关于全基因组关联分析(GWAS)原理的书籍或者文章推荐. 其实我个人觉得,做这个分析,先从跑流程开始,再去看原理. 为什么这么说呢,因为对于初学者来说,跑流程就像一个大黑洞,学习 ...

随机推荐

  1. Linux下的shell编程(二)BY 四喜三顺

    Ctrl + Alt + T 打开终端, $代表普通用户,#代表超级用户(root user)如:    xiangqi@xiangqi ~$           root@xiangqi ~# ec ...

  2. backprop示例

    http://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html

  3. Linux 用户和用户组管理

    Linux 用户和用户组管理 Linux系统是一个多用户多任务的分时操作系统,任何一个要使用系统资源的用户,都必须首先向系统管理员申请一个账号,然后以这个账号的身份进入系统. 用户的账号一方面可以帮助 ...

  4. JS获取IMG图片高宽

    前段时间在LJW写的touchslider.js轮播代码里添加自适应屏幕大小的功能时,遇到一个问题.不管用什么样的方法都无法获取到IMG标签的高宽,最后只有给图片定一个高宽的比例值:趁今天有空我就写了 ...

  5. MongoDB学习笔记(入门)

    一.文档的注意事项:1.  键值对是有序的,如:{ "name" : "stephen", "genda" : "male&quo ...

  6. AKKA(一)认知AKKA

    Akka 是一个用 Scala 编写的库,用于简化编写容错的.高可伸缩性的 Java 和 Scala 的 Actor 模型应用.它已经成功运用在电信行业.系统几乎不会宕机(高可用性 99.999999 ...

  7. ASP.NET MVC WEBAPI第一次接触

    asp.net 的MVC4 WEBAPI的出现已经有段时间了.最近因为做自己的一些小玩儿,要做一个API,正好可以学习一下这个WEBAPI. WEBAPI项目的创建我就不啰嗦,先来看看webapi的路 ...

  8. 用CMake构建Qt5的Visual Studio工程

    使用Visual Studio构建Qt工程的方法有很多种,可以使用Visual Studio自带的功能手动创建配置工程,也可以创建pro文件,然后通过VS的Qt插件导入进行创建.还有一种方式是通过CM ...

  9. Python算法-冒泡排序

    #coding:utf-8 """ 冒泡排序 原理:依次重复访问每一个需要排序的元素,每次比较相邻的两个元素是否符合顺序,若不符合就交换,直到没有不符合顺序的为止. &q ...

  10. 《CoffeeScript应用开发》学习: CoffeeScript高级用法

    正确的上下文 使用胖箭头=>表示将回调函数绑定到this对象. class t func: (callback)-> if callback? setTimeout callback(), ...