MCMC and Bayesian Data Analysis(PPT在文件模块)
How to generate a sample from $p(x)$?
Let's first see how Matlab samples from a $p(x)$. In Matlab, there are several common probability distributions.

Try univariate Gaussian distribution
p= normpdf(linspace(xmin , xmax , num_of_points) , mean, standard_deviation);%PDF
c= normcdf(linspace(xmin , xmax , num_of_points) , mean, standard_deviation);%CDF
y=normrnd(mean, standard_deviation,number_of_samples, 1);%Random Number Generating Method
Try PDF:
x=linespace(-1,1,1000);
p=normpdf(x ,0, 1);
plot(x,p);
Note: linespace returns a vector which is usually accessed like this
x(1)%the first elem, not x(0)
x(:)
x(1,:)
Try RSM:
y=normrnd(0, 1,100, 1);%试试采10000个样本
hist( y , 20 );%20 bars
Try univariate uniform distribution
p= unifpdf(linspace(xmin , xmax , num_of_points) , a,b);%PDF
c= unifcdf(linspace(xmin , xmax , num_of_points) , a,b);%CDF
y=unifrnd(a,b,number_of_samples, 1);%RNG
Try PDF:
x=linespace(-10,10,1000);
p= unifpdf(x ,-5,5);
plot(x,p);
Try RSM:
y=unifrnd(-5, 5,100, 1);%试试采10000个样本
hist( y , 20 );%20 bars
Matlab provides random number generating functions for some standard $p(x)$, it doesn't provide us sampling functions for a general $p(x)$. Here I show some common sampling methods.
Inverse Transform Sampling(ITS)
with descret variables
This method generates random numbers from any probability distribution given the inverse of its cumulative distribution function. The idea is to sample uniformly distributed random numbers (between 0 and 1) and then transform these values using the inverse cumulative distribution function(InvCDF)(which can be descret or continous). If the InvCDF is descrete, then the ITS method just requires a table lookup, like shown in Table 1.

Table 1. Probability of digits observed in human random digit generation experiment
There is a method called randsample in Matlab that can implement the sampling process using the Table 1. See the code below.
%Note: The randsample doesn't defaultly exist in Octave-core package, install statistic package from http://octave.sourceforge.net/statistics/ before using randsample. % probabilities for each digit
theta=[0.000; ... % digit 0
0.100; ... % digit 1
0.090; ... % digit 2
0.095; ... % digit 3
0.200; ... % digit 4
0.175; ... % digit 5
0.190; ... % digit 6
0.050; ... % digit 7
0.100; ... % digit 8
0.000]; seed = 1; rand( 'state' , seed );% fix the random number generator
K = 10000;% let's say we draw K random values
digitset = 0:9;
Y = randsample(digitset,K,true,theta);
figure( 1 ); clf;
counts = hist( Y , digitset );
bar( digitset , counts , 'k' );
xlim([-0.5 9.5]);
xlabel( 'Digit' );
ylabel( 'Frequency' );
title( 'Distribution of simulated draws of human digit generator' );
pause;
Instead of using the built-in functions such as randsample or mnrnd, it is helpful to consider how to implement the underlying sampling algorithm using the inverse transform method which is:
(1) Calculate $F(X)$.
(2) Sample u from Uniform(0,1).
(3) Get a sample $x^{i}$ of $P(X)$, which is $F(u)^{-1}$.
(4) Repeat (2) and (3) until we get enough samples.
Note: For discrete distributions, $F(X)^{-1}$ is discrete, the way to get a sample $x^{i}$ is illustrated below where $u=0.8,~x^{i}=6$ .

with continuous variables
This can be done with the following procedure:
(1) Draw U ∼ Uniform(0, 1).
(2) Set $X=F(U)^{-1}$
(3) Repeat
For example, we want to sample random numbers from the exponential distribution where its CDF is F (x|λ) = 1 − exp(−x/λ) . Then $F(u|\gamma)^{-1}=-log(1-u)\gamma$. Therefore replace $F(U)^{-1}$ with $F(u|\gamma)^{-1}$.
p=-log(1-unifrnd(0,1,10000,1))*2;
hist(p,30);
Reject Sampling
Applied situation: impossible/difficult to compute CDF of $P(X)$.
Advantage: unlike MCMC, it doesn't require of any “burn-in” period, i.e., all samples obtained during sampling can immediately be used as samples from the target distribution $p(\theta)$.

Based on the Figure above, the method is:
(1) Choose a proposal distribution q(θ) that is easy to sample from.
(2) Find a constant c such that cq(θ) ≥ p(θ) for all θ.
(3) Draw a proposal θ from q(θ).
(4) Draw a u from Uniform[0, cq(θ)].
(5) Reject the proposal if u > p(θ), accept otherwise. Actually, since u is sampled from Uniform[0, cq(θ)], it is equal to state like this " Reject if $u\in[p(\theta),cq(\theta)]$, accept otherwise".
(6) Repeat steps 3, 4, and 5 until desired number of samples is reached; each accepted sample $\theta$ is a draw from p(θ).
For example

then the code is
k=100000;%draw k samples
c=2;
theta_vec=unifrnd(0,1,k,1)%gen a proposal vector from q($\theta$)
cq_vec=c*unifpdf(theta_vec);%cq(theta) vector
p_vec=2*theta_vec;%p(theta) vector
u_vec=[];
for cq=cq_vec
u_vec=[u_vec;unifrnd(0,cq)];
end
r=theta_vec.*(u_vec<p_vec);
r(r==0)=[];%remove the “0” elements
hist(r,20);

MCMC Sampling
Before getting to know MCMC sampling, we first get to know Monte Carlo Integration and Markov Chain.



For example:
%Implement the Markov Chain involving x under Beta(200(0.9x^((t-1))+0.05),200(1-0.9x^((t-1)-0.05))
fa=inline('','x')%parameter a for beta
fb=inline('200*(1-0.9*x-0.05)','x');%parameter b for beta
no4mc=4;%4 markove chains
states=unifrnd(0,1,1,no4mc);%initial states
N=1000;%200 samples drawn from 4 chains
X=states;
for i=1:N
states=betarnd(fa(states),fb(states));
X=[X;states];
end;
plot(X);
pause;

Metroplis Sampling
MCMC and Bayesian Data Analysis(PPT在文件模块)的更多相关文章
- 《利用Python进行数据分析: Python for Data Analysis 》学习随笔
NoteBook of <Data Analysis with Python> 3.IPython基础 Tab自动补齐 变量名 变量方法 路径 解释 ?解释, ??显示函数源码 ?搜索命名 ...
- 深入浅出数据分析 Head First Data Analysis Code 数据与代码
<深入浅出数据分析>英文名为Head First Data Analysis Code, 这本书中提供了学习使用的数据和程序,原书链接由于某些原因不 能打开,这里在提供一个下载的链接.去下 ...
- 数据分析---《Python for Data Analysis》学习笔记【04】
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...
- 数据分析---《Python for Data Analysis》学习笔记【03】
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...
- 数据分析---《Python for Data Analysis》学习笔记【02】
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...
- 数据分析---《Python for Data Analysis》学习笔记【01】
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...
- Aspose是一个很强大的控件,可以用来操作word,excel,ppt等文件
Aspose是一个很强大的控件,可以用来操作word,excel,ppt等文件,用这个控件来导入.导出数据非常方便.其中Aspose.Cells就是用来操作Excel的,功能有很多.我所用的是最基本的 ...
- 《python for data analysis》第五章,pandas的基本使用
<利用python进行数据分析>一书的第五章源码与读书笔记 直接上代码 # -*- coding:utf-8 -*-# <python for data analysis>第五 ...
- 《python for data analysis》第四章,numpy的基本使用
<利用python进行数据分析>第四章的程序,介绍了numpy的基本使用方法.(第三章为Ipython的基本使用) 科学计算.常用函数.数组处理.线性代数运算.随机模块…… # -*- c ...
随机推荐
- IT行业找工作难
1.面试官主要看年龄,年龄小,技术再牛也不给你面试机会. 2.现在培训机构太多了,不管多大岁数的人看见这行业赚钱就立刻辞职去培训. 3.刚培训出来的能找到2w!!有的老板面试只看工作经验,不管之前干什 ...
- 微服务实战系列--Nginx官网发布(转)
这是Nginx官网写的一个系列,共七篇文章,如下 Introduction to Microservices (this article) Building Microservices: Using ...
- etcd api 接口
etcd api接口 基本操作api: https://github.com/coreos/etcd/blob/6acb3d67fbe131b3b2d5d010e00ec80182be4628/Doc ...
- 错误C4146的解决方法
error C4146: 一元负运算符应用于无符号类型,结果仍为无符号类型: 那么什么情况下会遇见这种错误呢,例如下代码: 错误代码1:int number = -2147483648; //erro ...
- leetcode-javascript
1. Largest Number For example, given [3, 30, 34, 5, 9], the largest formed number is 9534330. // wro ...
- [vivado系列]Vivado软件的下载
时间:2016.10.27 ------------------ 前言:我们知道vivado软件是用于xilinx的7系列及以上器件的FPGA开发工具. 随着版本的不断更新,也变得越来越庞大.臃肿! ...
- inotifywait命令
[命令格式]: inotifywait [ options ] file1 [ file2 ] [ file3 ] [ ... ][命令原意]: inote file system wait[命令路径 ...
- 忘记密码流程——UUID,AES
忘记密码流程 1.进入忘记密码页面 2. 后台检验参数合法性(null,验证码,邮箱合法性) 3,生成更新密码链接,并将相关参数写入DB link=urlBase(baseurl)+updatePas ...
- oracle ORA-01427: 单行子查询返回多个行
ORA-01427: 单行子查询返回多个行 前几天开发的同事反馈一个问题,说前台系统报出了ORA错误,希望我们能看看是什么原因.java.sql.SQLException: ORA-01427: si ...
- .Net 零星小知识
1. 深拷贝和浅拷贝 单纯讲这两个词,其实不容易记住区别,但是看看他们对应的英语单词就显而易见了: 深拷贝: Clone 浅拷贝: Copy 记住了这个,下面在看看详细一点的信息: Copy: 只是复 ...