简介

    之前一篇简单的介绍了语法和一些基本的概念,隔了一段时间,觉得有必要细致的通过实例来总结一下这部分内容。如之前所说,分区就是讲大型的对象(表)分成更小的块来管理,基本单位是行。这也就产生了很大优势, 比如在数据库维护备份还原操作的时候,比如在大量用户访问能导致死锁的时候等等。

接下来我们通过大量实例从分区到展示分区的效果以及一些实际案例来提高对这部分知识的理解。

--******************
--1.创建分区函数
--******************

--Create the partition function: dailyPF
DECLARE @StartDay DATE=DATEADD(dd,-3,CAST(SYSDATETIME() AS DATE));
CREATE PARTITION FUNCTION DailyPF (DATETIME2(0))
    AS RANGE RIGHT FOR VALUES
    (@StartDay, DATEADD(dd,1,@StartDay), DATEADD(dd,2,@StartDay), 
        DATEADD(dd,3,@StartDay), DATEADD(dd,4,@StartDay) );
GO

范围分区函数指定范围的边界,left和right关键字指定当数据库引擎按照剩余从左到右对区间值进行排序是,边界值属于那一边,默认为left。分区范围不能有间隔。

--******************
--2. 创建文件组

--******************

ALTER DATABASE PartitionThis ADD FILEGROUP DailyFG1
GO
ALTER DATABASE PartitionThis ADD FILEGROUP DailyFG2
GO
ALTER DATABASE PartitionThis ADD FILEGROUP DailyFG3
GO
ALTER DATABASE PartitionThis ADD FILEGROUP DailyFG4
GO
ALTER DATABASE PartitionThis ADD FILEGROUP DailyFG5
GO
ALTER DATABASE PartitionThis ADD FILEGROUP DailyFG6
GO

这里我们建立6个文件组,同时也可以为文件组创建文件,

接下来我为文件组创建分区方案:

 

--******************
--3. 创建分区架构
--******************

--
CREATE PARTITION SCHEME DailyPS
    AS PARTITION DailyPF
    TO (DailyFG1, DailyFG2, DailyFG3, DailyFG4, DailyFG5, DailyFG6);

 

--******************
--4. 在分区架构上建表
--******************

if OBJECT_ID('OrdersDaily','U') is null
CREATE TABLE OrdersDaily (
    OrderDate DATETIME2(0) NOT NULL,
    OrderId int IDENTITY NOT NULL,
    OrderName nvarchar(256) NOT NULL
) on DailyPS(OrderDate)
GO

这里我们将分区函数映射到单个文件组里面,调用我们之前建立的分区函数即可。然后接着创建表在分区文件上,同时应用分区函数在

OrderDate时间上。这里我们还需要插入一部分测试数据便于观察,同时创建一个架构便于查询分区

--*******************************
--创建架构
--*******************************

--Create a schema for "partition helper" objects
CREATE SCHEMA [ph] AUTHORIZATION dbo;
GO

--插入测试数据
INSERT OrdersDaily(OrderDate, OrderName)
SELECT DATEADD(ss, t.N, DATEADD(dd,-3,CAST(CAST(SYSDATETIME() AS DATE) AS DATETIME2(0)))) AS OrderDate,
    CASE WHEN t.N % 3 = 0 THEN 'Robot' WHEN t.N % 4 = 0 THEN 'Badger'  ELSE 'Pen' END AS OrderName
FROM ph.tally AS t--tally是一个1到10万自增长的表,只有一个字段 N

WHERE N < = 1000;
   

INSERT OrdersDaily(OrderDate, OrderName)
SELECT DATEADD(ss, t.N, DATEADD(dd,-2,CAST(CAST(SYSDATETIME() AS DATE) AS DATETIME2(0)))) AS OrderDate,
    CASE WHEN t.N % 3 = 0 THEN 'Flying Monkey' WHEN t.N % 4 = 0 THEN 'Junebug'  ELSE 'Pen' END AS OrderName
FROM ph.tally AS t
WHERE N < = 2000;

INSERT OrdersDaily(OrderDate, OrderName)
SELECT DATEADD(ss, t.N, DATEADD(dd,-1,CAST(CAST(SYSDATETIME() AS DATE) AS DATETIME2(0)))) AS OrderDate,
    CASE WHEN t.N % 2 = 0 THEN 'Turtle' WHEN t.N % 5 = 0 THEN 'Eraser'  ELSE 'Pen' END AS OrderName
FROM ph.tally AS t
WHERE N < = 3000;

INSERT OrdersDaily(OrderDate, OrderName)
SELECT DATEADD(ss, t.N, CAST(CAST(SYSDATETIME() AS DATE) AS DATETIME2(0))) AS OrderDate,
    CASE WHEN t.N % 3 = 0 THEN 'Lasso' WHEN t.N % 2 = 0 THEN 'Cattle Prod'  ELSE 'Pen' END AS OrderName
FROM ph.tally AS t
WHERE N < = 4000;
GO

随即在创建相关的索引

--******************
--7. 创建索引
--******************
--添加聚集索引
ALTER TABLE OrdersDaily
ADD CONSTRAINT PKOrdersDaily
    PRIMARY KEY CLUSTERED(OrderDate,OrderId)
GO

--对齐索引
--
CREATE NONCLUSTERED INDEX NCOrderIdOrdersDaily
    ON OrdersDaily(OrderId)
GO

--非对齐索引
CREATE NONCLUSTERED INDEX NCOrderNameOrdersDailyNonAligned
    ON OrdersDaily(OrderName) ON [PRIMARY]
GO

此时建立分区文件数据等条件后,我们可以看一下相应的文件及数据的情况,可以同过如下DMV来查看

SELECT  SCHEMA_NAME(so.schema_id) AS schema_name ,
        OBJECT_NAME(p.object_id) AS object_name ,
        p.partition_number ,
        p.data_compression_desc ,
        dbps.row_count ,
        dbps.reserved_page_count * 8 / 1024. AS reserved_mb ,
        si.index_id ,
        CASE WHEN si.index_id = 0 THEN '(heap!)'
                ELSE si.name
        END AS index_name ,
        si.is_unique ,
        si.data_space_id ,
        mappedto.name AS mapped_to_name ,
        mappedto.type_desc AS mapped_to_type_desc ,
        partitionds.name AS partition_filegroup ,
        pf.name AS pf_name ,
        pf.type_desc AS pf_type_desc ,
        pf.fanout AS pf_fanout ,
        pf.boundary_value_on_right ,
        ps.name AS partition_scheme_name ,
        rv.value AS range_value
FROM    sys.partitions p
JOIN    sys.objects so
        ON p.object_id = so.object_id
            AND so.is_ms_shipped = 0
LEFT JOIN sys.dm_db_partition_stats AS dbps
        ON p.object_id = dbps.object_id
            AND p.partition_id = dbps.partition_id
JOIN    sys.indexes si
        ON p.object_id = si.object_id
            AND p.index_id = si.index_id
LEFT JOIN sys.data_spaces mappedto
        ON si.data_space_id = mappedto.data_space_id
LEFT JOIN sys.destination_data_spaces dds
        ON si.data_space_id = dds.partition_scheme_id
            AND p.partition_number = dds.destination_id
LEFT JOIN sys.data_spaces partitionds
        ON dds.data_space_id = partitionds.data_space_id
LEFT JOIN sys.partition_schemes AS ps
        ON dds.partition_scheme_id = ps.data_space_id
LEFT JOIN sys.partition_functions AS pf
        ON ps.function_id = pf.function_id
LEFT JOIN sys.partition_range_values AS rv
        ON pf.function_id = rv.function_id
            AND dds.destination_id = CASE pf.boundary_value_on_right
                                        WHEN 0 THEN rv.boundary_id
                                        ELSE rv.boundary_id + 1
                                    END

查询结果如图:

可以发现按照日期的分布产生了不同文件组的数据插入到了不同的文件里面和索引里面了。

接下来我们通过分区切换来更好的理解分区的意义,首先要建立新的文件组(DailyF7)来切换分区,同时创建一个分区表OrdersDailyLoad,并向这个表里面插入5000条数据创建索引等以上的操作单独对此表进行一遍重复操作,来实现对新分区的新标的对齐。注意5000条数据一定要在指定范围内,比如使用check约束使数据在11.30-12.1日内的数据。

 

代码:

在切换之前我们一定要禁用或者删除掉这个分区的对其的索引
ALTER INDEX NCOrderNameOrdersDailyNonAligned ON OrdersDaily DISABLE;
GO
ALTER TABLE OrdersDailyLoad
SWITCH TO OrdersDaily PARTITION 6;
GO

如图,分区切换后文件组6中变为了5000条数据,而7中变为了空。

如果需要切换回来执行

ALTER TABLE PARTITION 6
SWITCH TO OrdersDaily OrdersDailyLoad ;
GO

如果需要合并分区

ALTER PARTITION FUNCTION DailyPF ()
        MERGE RANGE (‘2015-11-27 00:00:00.000’)

结果:此界点两个分区将合并为一个

 

 

 

总结:

           通过以上代码和实例的展示,我们能了解如何使用分区。同时我们要知道分区的意义。但是要知道分区也是一把双刃剑,它可以看做是一个性能选项、管理选项、可扩展工具,在提高数据查询、维护性能的同时也对数据库的备份还原策略、索引的维护、并发性以及变分区锁等有副作用,所以具体是否选用表分区要根据实际情况来判断,然后推荐一个工具(DataBase Tuning Adcisor)运行工作负载来提供是否分区的建议。

优化SQLServer——表和分区索引(二)的更多相关文章

  1. 优化SQLServer——表和分区索引

    概念: 简单地说,分区是将大型的对象(如表)分成更小的且易于管理的小块.分区的基本单位是行,需要注意的是与分区视图不同的地方时,分区必须位于同一个数据库内. 分区的原因:            对于非 ...

  2. MySQL单机优化---分表、分区、分库

    一.分表: 水平分表:根据条件把数据分为N个表(例如:商品表中有月份列,则可以按月份进行水平分表). 使用场景:一张表中数据太多,查询效率太慢. 当需要同时查询被水平分表的多张表时: 在两条SQL语句 ...

  3. SQL Server查询性能优化——堆表、碎片与索引(二)

    本文是对 SQL Server查询性能优化——堆表.碎片与索引(一)的一些总结.  第一:先对 SQL Server查询性能优化——堆表.碎片与索引(一)中的例一的SET STATISTICS IO之 ...

  4. (转)SQLSERVER表分区的介绍(一)

    下面进入正题吧,很多时候当单张数据表的数据量比较大的时候比如千万级别条记录.上亿级别记录,如果不做优化,那么查询的效率大家清楚. 有经验的人会通过各种手段做优化,其中表分区就是其中一种手段. 个人对表 ...

  5. sqlserver表分区

    参考:http://www.cnblogs.com/knowledgesea/p/3696912.html 及百度搜索sqlserver表分区 create partition function sg ...

  6. SQL优化的四个方面,缓存,表结构,索引,SQL语句

    一,缓存 数据库属于 IO 密集型的应用程序,其主要职责就是数据的管理及存储工作.而我们知道,从内存中读取一个数据库的时间是微秒级别,而从一块普通硬盘上读取一个IO是在毫秒级别,二者相差3个数量级.所 ...

  7. 优化的四个方面,缓存,表结构,索引,SQL语句

    一,缓存 数据库属于 IO 密集型的应用程序,其主要职责就是数据的管理及存储工作.而我们知道,从内存中读取一个数据库的时间是微秒级别,而从一块普通硬盘上读取一个IO是在毫秒级别,二者相差3个数量级.所 ...

  8. MySQL数据库性能优化:表、索引、SQL等

    一.MySQL 数据库性能优化之SQL优化 注:这篇文章是以 MySQL 为背景,很多内容同时适用于其他关系型数据库,需要有一些索引知识为基础 优化目标 减少 IO 次数IO永远是数据库最容易瓶颈的地 ...

  9. sqlserver表分区小结

    为什么要表分区?  当一个表的数据量太大的时候,我们最想做的一件事是什么?将这个表一分为二或者更多分,但是表还是这个表,只是将其内容存储分开,这样读取就快了N倍了 原理:表数据是无法放在文件中的,但是 ...

随机推荐

  1. ASP.NET MVC 网站开发总结(一)

    历经一个多月的努力,工作室的门户网站(http://www.wingstudio.org)终于结束了内部公测. 仔细算一下,大概把网站开发出1.0版本大概用了一个月的时间(主要是利用课余时间),其后大 ...

  2. C#中考虑为大对象使用弱引用

    1.无论怎样尽力,我们总是会使用到某些需要大量内存的数据,而这些内存并不需要经常访问.或许你需要从一个大文件中查找某个特定的值,或者算法需要一个较大的查询表.这时,你也许会采用2中不太好做法:第一种是 ...

  3. 自行实现PHP代码注解特性

    PHP 注解 到目前为止,PHP的反射特性中是不支持注解Annotation的,但是可以支持基本的文档注释内容的获取 ReflectionMethod::getDocComment() - 从5.1. ...

  4. sp_get_menu函数使用分析

    function sp_get_menu($id="main",$effected_id="mainmenu",$filetpl="<span ...

  5. sso demo 取消https (cas)

    基本配置 参考之前得随笔  http://www.cnblogs.com/rocky-fang/p/5354947.html 1. 修改tomcat-cas 配置 1.1 在 D:\test\sso\ ...

  6. Android应用开发基础之十:多媒体编程

    多媒体概念 文字.图片.音频.视频 计算机图片大小的计算 图片大小 = 图片的总像素 * 每个像素占用的大小 单色图:每个像素占用1/8个字节 16色图:每个像素占用1/2个字节 256色图:每个像素 ...

  7. Nibbler – 免费的网站测试和指标评分工具

    Nibbler 是一款免费的工具,用于测试网站的各个方面指标.输入任意网站的地址,Nibbler 会给你一份报告,列出网站的10个关键领域的分数,包括可访问性,用户体验,搜索引擎优化,社交媒体和技术等 ...

  8. go语言 类型:字符串

    示例 package main import ( "fmt" ) func main() { var str1 string // 声明一个字符串变量 str1 = "H ...

  9. 调用MyFocus库,简单实现二十几种轮播效果

    一.首先点击这里下载myFocus库文件,标准文件库就行了,很小仅仅1.4M. myFocus库有以下的好处: a . 文件小巧却高效强大,能够实现二十几种轮播的效果. b . 极其简单的使用,只需要 ...

  10. HtmlEncode和JavaScriptEncode(预防XSS)

    在数据添加到DOM时候,我们可以需要对内容进行HtmlEncode或JavaScriptEncode,以预防XSS攻击. JavaScriptEncode 使用“\”对特殊字符进行转义,除数字字母之外 ...