A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.

Example:

Input: 

1 - 0 - 0 - 0 - 1
| | | | |
0 - 0 - 0 - 0 - 0
| | | | |
0 - 0 - 1 - 0 - 0 Output: 6 Explanation: Given three people living at (0,0), (0,4), and (2,2):
  The point (0,2) is an ideal meeting point, as the total travel distance
  of 2+2+2=6 is minimal. So return 6.

Hint:

  1. Try to solve it in one dimension first. How can this solution apply to the two dimension case?

这道题让我们求最佳的开会地点,该地点需要到每个为1的点的曼哈顿距离之和最小,题目中给了提示,让从一维的情况来分析,先看一维时有两个点A和B的情况,

______A_____P_______B_______

可以发现,只要开会为位置P在 [A, B] 区间内,不管在哪,距离之和都是A和B之间的距离,如果P不在 [A, B] 之间,那么距离之和就会大于A和B之间的距离,现在再加两个点C和D:

______C_____A_____P_______B______D______

通过分析可以得出,P点的最佳位置就是在 [A, B] 区间内,这样和四个点的距离之和为AB距离加上 CD 距离,在其他任意一点的距离都会大于这个距离,那么分析出来了上述规律,这题就变得很容易了,只要给位置排好序,然后用最后一个坐标减去第一个坐标,即 CD 距离,倒数第二个坐标减去第二个坐标,即 AB 距离,以此类推,直到最中间停止,那么一维的情况分析出来了,二维的情况就是两个一维相加即可,参见代码如下:

解法一:

class Solution {
public:
int minTotalDistance(vector<vector<int>>& grid) {
vector<int> rows, cols;
for (int i = ; i < grid.size(); ++i) {
for (int j = ; j < grid[i].size(); ++j) {
if (grid[i][j] == ) {
rows.push_back(i);
cols.push_back(j);
}
}
}
return minTotalDistance(rows) + minTotalDistance(cols);
}
int minTotalDistance(vector<int> v) {
int res = ;
sort(v.begin(), v.end());
int i = , j = v.size() - ;
while (i < j) res += v[j--] - v[i++];
return res;
}
};

我们也可以不用多写一个函数,直接对 rows 和 cols 同时处理,稍稍能简化些代码:

解法二:

class Solution {
public:
int minTotalDistance(vector<vector<int>>& grid) {
vector<int> rows, cols;
for (int i = ; i < grid.size(); ++i) {
for (int j = ; j < grid[i].size(); ++j) {
if (grid[i][j] == ) {
rows.push_back(i);
cols.push_back(j);
}
}
}
sort(cols.begin(), cols.end());
int res = , i = , j = rows.size() - ;
while (i < j) res += rows[j] - rows[i] + cols[j--] - cols[i++];
return res;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/296

类似题目:

Minimum Moves to Equal Array Elements II

Shortest Distance from All Buildings

参考资料:

https://leetcode.com/problems/best-meeting-point/

https://leetcode.com/problems/best-meeting-point/discuss/74186/14ms-java-solution

https://leetcode.com/problems/best-meeting-point/discuss/74244/Simple-Java-code-without-sorting.

https://leetcode.com/problems/best-meeting-point/discuss/74193/Java-2msPython-40ms-two-pointers-solution-no-median-no-sort-with-explanation

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Best Meeting Point 最佳开会地点的更多相关文章

  1. [LeetCode] 296. Best Meeting Point 最佳开会地点

    A group of two or more people wants to meet and minimize the total travel distance. You are given a ...

  2. [Swift]LeetCode296. 最佳开会地点 $ Best Meeting Point

    A group of two or more people wants to meet and minimize the total travel distance. You are given a ...

  3. [LeetCode] 253. Meeting Rooms II 会议室 II

    Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si ...

  4. LeetCode 252. Meeting Rooms (会议室)$

    Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si ...

  5. [LeetCode] 253. Meeting Rooms II 会议室之二

    Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si ...

  6. [LeetCode] 252. Meeting Rooms 会议室

    Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si ...

  7. [LeetCode] Best Meeting Point

    Problem Description: A group of two or more people wants to meet and minimize the total travel dista ...

  8. [LeetCode#253] Meeting Rooms II

    Problem: Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2] ...

  9. [LeetCode#252] Meeting Rooms

    Problem: Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2] ...

随机推荐

  1. HTML5 网络拓扑图整合 OpenLayers 实现 GIS 地图应用

    在前面<百度地图.ECharts整合HT for Web网络拓扑图应用>我们有介绍百度地图和 HT for Web 的整合,我们今天来谈谈 OpenLayers 和 HT for Web  ...

  2. scikit-learn一般实例之八:多标签分类

    本例模拟一个多标签文档分类问题.数据集基于下面的处理随机生成: 选取标签的数目:泊松(n~Poisson,n_labels) n次,选取类别C:多项式(c~Multinomial,theta) 选取文 ...

  3. Oracle 中的操作符

    1.union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序: SELECT * FROM emp WHERE sal < UNION SELECT * FROM emp WH ...

  4. html+ccs3太阳系行星运转动画之土星有个环,地球有颗小卫星

    在上一篇<html+ccs3太阳系行星运转动画>中实现了太阳系八大行星的基本运转动画. 太阳系又何止这些内容,为丰富一下动画,接下来增加“土星环”和“月球”来充盈太阳系动画. 下面是充盈后 ...

  5. C# WinForm国际化的简单实现

    软件行业发展到今天,国际化问题一直都占据非常重要的位置,而且应该越来越被重视.对于开发人员而言,在编写程序之前,国际化问题是首先要考虑的一个问题,也许有时候这个问题已经在设计者的考虑范围之内,但终归要 ...

  6. 来玩Play框架03 模板

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 在上一章节中,我把字符串通过ok()返回给客户.我可以把一个完整的html页面放入 ...

  7. java web学习总结(二十七) -------------------JSP标签介绍

    一.JSP标签介绍 JSP标签也称之为Jsp Action(JSP动作)元素,它用于在Jsp页面中提供业务逻辑功能,避免在JSP页面中直接编写java代码,造成jsp页面难以维护. 二.JSP常用标签 ...

  8. 在centos 服务器上安装phalcon框架 undefined symbol: php_pdo_get_dbh_ce

    去git 下载对应版本的框架 命令行: sudo yum install php-devel pcre-devel gcc make 然后使用GIT clone到服务器上,然后 git clone g ...

  9. 对于System.exit(0)和System.exit(1)的一般理解

    public static void exit(int status) 终止当前正在运行的 Java 虚拟机.参数用作状态码:根据惯例,非 0 的状态码表示异常终止. 该方法调用 Runtime 类中 ...

  10. HTML+CSS项目开发总结

    好几天没更新博客了,刚实战完一个HTML+CSS的简单项目.经过几天的摸索,发现收益良多.之前只是单纯得写demo,看知识点,没有亲自实战项目.但实战过后才会了解,如何才能更好地提升自己的技术.针对这 ...