A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.

Example:

Input: 

1 - 0 - 0 - 0 - 1
| | | | |
0 - 0 - 0 - 0 - 0
| | | | |
0 - 0 - 1 - 0 - 0 Output: 6 Explanation: Given three people living at (0,0), (0,4), and (2,2):
  The point (0,2) is an ideal meeting point, as the total travel distance
  of 2+2+2=6 is minimal. So return 6.

Hint:

  1. Try to solve it in one dimension first. How can this solution apply to the two dimension case?

这道题让我们求最佳的开会地点,该地点需要到每个为1的点的曼哈顿距离之和最小,题目中给了提示,让从一维的情况来分析,先看一维时有两个点A和B的情况,

______A_____P_______B_______

可以发现,只要开会为位置P在 [A, B] 区间内,不管在哪,距离之和都是A和B之间的距离,如果P不在 [A, B] 之间,那么距离之和就会大于A和B之间的距离,现在再加两个点C和D:

______C_____A_____P_______B______D______

通过分析可以得出,P点的最佳位置就是在 [A, B] 区间内,这样和四个点的距离之和为AB距离加上 CD 距离,在其他任意一点的距离都会大于这个距离,那么分析出来了上述规律,这题就变得很容易了,只要给位置排好序,然后用最后一个坐标减去第一个坐标,即 CD 距离,倒数第二个坐标减去第二个坐标,即 AB 距离,以此类推,直到最中间停止,那么一维的情况分析出来了,二维的情况就是两个一维相加即可,参见代码如下:

解法一:

class Solution {
public:
int minTotalDistance(vector<vector<int>>& grid) {
vector<int> rows, cols;
for (int i = ; i < grid.size(); ++i) {
for (int j = ; j < grid[i].size(); ++j) {
if (grid[i][j] == ) {
rows.push_back(i);
cols.push_back(j);
}
}
}
return minTotalDistance(rows) + minTotalDistance(cols);
}
int minTotalDistance(vector<int> v) {
int res = ;
sort(v.begin(), v.end());
int i = , j = v.size() - ;
while (i < j) res += v[j--] - v[i++];
return res;
}
};

我们也可以不用多写一个函数,直接对 rows 和 cols 同时处理,稍稍能简化些代码:

解法二:

class Solution {
public:
int minTotalDistance(vector<vector<int>>& grid) {
vector<int> rows, cols;
for (int i = ; i < grid.size(); ++i) {
for (int j = ; j < grid[i].size(); ++j) {
if (grid[i][j] == ) {
rows.push_back(i);
cols.push_back(j);
}
}
}
sort(cols.begin(), cols.end());
int res = , i = , j = rows.size() - ;
while (i < j) res += rows[j] - rows[i] + cols[j--] - cols[i++];
return res;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/296

类似题目:

Minimum Moves to Equal Array Elements II

Shortest Distance from All Buildings

参考资料:

https://leetcode.com/problems/best-meeting-point/

https://leetcode.com/problems/best-meeting-point/discuss/74186/14ms-java-solution

https://leetcode.com/problems/best-meeting-point/discuss/74244/Simple-Java-code-without-sorting.

https://leetcode.com/problems/best-meeting-point/discuss/74193/Java-2msPython-40ms-two-pointers-solution-no-median-no-sort-with-explanation

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Best Meeting Point 最佳开会地点的更多相关文章

  1. [LeetCode] 296. Best Meeting Point 最佳开会地点

    A group of two or more people wants to meet and minimize the total travel distance. You are given a ...

  2. [Swift]LeetCode296. 最佳开会地点 $ Best Meeting Point

    A group of two or more people wants to meet and minimize the total travel distance. You are given a ...

  3. [LeetCode] 253. Meeting Rooms II 会议室 II

    Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si ...

  4. LeetCode 252. Meeting Rooms (会议室)$

    Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si ...

  5. [LeetCode] 253. Meeting Rooms II 会议室之二

    Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si ...

  6. [LeetCode] 252. Meeting Rooms 会议室

    Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si ...

  7. [LeetCode] Best Meeting Point

    Problem Description: A group of two or more people wants to meet and minimize the total travel dista ...

  8. [LeetCode#253] Meeting Rooms II

    Problem: Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2] ...

  9. [LeetCode#252] Meeting Rooms

    Problem: Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2] ...

随机推荐

  1. context:component-scan" 的前缀 "context" 未绑定。

    SpElUtilTest.testSpELLiteralExpressiontestSpELLiteralExpression(cn.zr.spring.spel.SpElUtilTest)org.s ...

  2. [原创]django+ldap实现统一认证部分二(python-ldap实践)

    前言 接上篇文章 [原创]django+ldap实现统一认证部分一(django-auth-ldap实践) 继续实现我们的统一认证 python-ldap 我在sso项目的backend/lib/co ...

  3. 【译】Asp.net mvc 使用ITextSharp PDF to HTML (解决img标签问题)

    前言:因项目需求,需要将HTML代码转成PDF.大致上已经实现了,可以是发现使用ITextSharp(我现在的版本是5.5.9)的时候,img标签中的src只能跟绝对路径. 在百度上找了一个上午,有一 ...

  4. IO模型

    前言 说到IO模型,都会牵扯到同步.异步.阻塞.非阻塞这几个词.从词的表面上看,很多人都觉得很容易理解.但是细细一想,却总会发现有点摸不着头脑.自己也曾被这几个词弄的迷迷糊糊的,每次看相关资料弄明白了 ...

  5. 前端渲染利器——JsRender入门

    JsRender不少前端人员应该都用过,它是一个比较强大的模板,不牵涉太多技术依赖,使用起来非常舒服.我本人在前端开发中使用React之前,都是用的它了(实际上我感觉React没有JsViewes好用 ...

  6. SpringMVC的执行流程(二)

    文字解析: 1.客户端发出一个http请求给web服务器,web服务器对http请求进行解析,如果匹配 DispatcherServlet的请求映射路径(在web.xml中指定),web容器将请求转交 ...

  7. Linux-ssh配置

  8. SharePoint2016如何使用策略进行文档归档

    前言 最近项目用户需要提供文档按照日期或标题关键字进行对应的文档归档操作,为了实施这个操作,需要准备2个文档库,我这里准备了如下文档库: 1. 测试文档库:在测试文档中上传几篇文档,如下图: 2. 我 ...

  9. 安装cocoapods以及更新cocoapods

    安装 1.设置ruby的软件源 这是因为ruby的软件源rubygems.org因为使用亚马逊的云服务,被我天朝屏蔽了,需要更新一下ruby的源,过程如下: gem sources -l #(查看当前 ...

  10. mvc mvp mvvm模式的区别

    mvc模式中,Model不依赖于View,但是View是依赖于Model的,m和v没有进行完全的分离,三者之间是单向的操作 mvp模式中,m和v之间的交互是双向的,m和v完全分离,m和v的交互是通过P ...