TensorFlow-谷歌深度学习库 用tfrecord写入读取
先介绍一下TensorFlow自带的数据格式:
TensorFlow自带一种数据格式叫做tfrecords。 你可以把你的输入转成专属与TensorFlow的tfrecords格式并保存在本地。
-关于输入碎碎念:输入比如图片,可以有各种格式呀首先你从网上下载到的一般是png或者jpg格式的吧, 你可以把它存成一个矩阵的形式(numpy ndarray),如果不用TensorFlow自带的tfrecords,你其实也可以存成python独有的pickle文件哈。
那么要怎样把数据存成tfrecords呢?
当然是用TensorFlow api库啦,就是下面这个Class:
tf.python_io.TFRecordWriter __init__(self, path, options=None)
Opens file `path` and creates a `TFRecordWriter` writing to it.
Args:
path: The path to the TFRecords file.
options: (optional) A TFRecordOptions object.
在参数列表里指明你想要存放的路径。
tf.python_io.TFRecordWriter('SVHN/train.tfrecords')
虽然有一点没逻辑,但是我还是要介绍一下在处理图片数据输入需要用到的一个TensorFlow Class:
class GFile(tensorflow.python.lib.io.file_io.FileIO)
这是一个用来处理文件IO的类,它包含一个类似正则的查找匹配的函数我们可以用它来找到我们想要的文件->tf.gfile.Glob
它返回一个包含所有满足条件元素的列表。
初始化一个TFRecordWriter完成后,就等于知道了tfrecords的存放路径,接下来就要往这个文件中存数据呀!这里用到了这个类的write函数。
tf.python_io.TFRecordWriter
write(self, record)
Write a string record to the file.
Args:
record: str
当要读取tfrecords中的数据时,要做以下的事情:
首先呢需要一个pipeline,然后需要将tfrecords的存放路径作为一个str放入到一个queue中。string_input_producer这个函数负责完成这件事。
string_input_producer(string_tensor, num_epochs=None, shuffle=True, seed=None, capacity=32, shared_name=None, name=None, cancel_op=None)
Output strings (e.g. filenames) to a queue for an input pipeline.
这个函数需要传入一个文件名list,系统会自动将它转为一个文件名队列。
tf.train.string_input_producer还有两个重要的参数,一个是num_epochs,它就epoch数。另外一个就是shuffle,shuffle是指在一个epoch内文件的顺序是否被打乱。
在tensorflow中,内存队列不需要我们自己建立,我们只需要使用reader对象从文件名队列中读取数据就可以了。
类似的TensorFlow有相对应的TFRecordReader类来读取。
class TFRecordReader(ReaderBase)
A Reader that outputs the records from a TFRecords file
__init__(self, name=None, options=None)
Create a TFRecordReader.
Args:
name: A name for the operation (optional).
options: A TFRecordOptions object (optional).
初始化一个TFRecordWriter完成后,接下来就要往这个文件中读数据呀!这里用到了这个类的read函数。
read(self, queue, name=None)
Returns the next record (key, value) pair produced by a reader. Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file). Args:
queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.
name: A name for the operation (optional). Returns:
A tuple of Tensors (key, value).
key: A string scalar Tensor.
value: A string scalar Tensor.
当要读取整个文件的时候,也可以使用WholeFileReader这个阅读器。它是TensorFlow提供的一个类。class tf.WholeFileReader
一个阅读器,读取整个文件,返回文件名称key,以及文件中所有的内容value。
创建阅读器之后,要从文件名队列中读取文件。
read(queue, name=None) method of tensorflow.python.ops.io_ops.WholeFileReader instance
Returns the next record (key, value) pair produced by a reader.返回下一个文件名称key和文件中所有内容的value。
Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).
如果需要,会从队列中出队一个单元。读取器在完成上一个文件后,继续读取下一个文件。Args:
queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.
name: A name for the operation (optional).Returns:
A tuple of Tensors (key, value).
key: A string scalar Tensor.
value: A string scalar Tensor.
关于TensorFlow的读取机制:
转载于https://zhuanlan.zhihu.com/p/27238630
什么是数据读取?假设我们的硬盘中有一个图片数据集0001.jpg,0002.jpg,0003.jpg……我们只需要把它们读取到内存中,然后提供给GPU或是CPU进行计算。

读取线程源源不断地将文件系统中的图片读入到一个内存的队列中,而负责计算的是另一个线程,计算需要数据时,直接从内存队列中取就可以了。这样就可以解决GPU因为IO而空闲的问题!
而在tensorflow中,为了方便管理,在内存队列前又添加了一层所谓的“文件名队列”。
为什么要添加这一层文件名队列?我们首先得了解机器学习中的一个概念:epoch。对于一个数据集来讲,运行一个epoch就是将这个数据集中的图片全部计算一遍。

TensorFlow-谷歌深度学习库 用tfrecord写入读取的更多相关文章
- Keras:基于Theano和TensorFlow的深度学习库
catalogue . 引言 . 一些基本概念 . Sequential模型 . 泛型模型 . 常用层 . 卷积层 . 池化层 . 递归层Recurrent . 嵌入层 Embedding 1. 引言 ...
- TensorFlow-谷歌深度学习库 手把手教你如何使用谷歌深度学习云平台
自己的电脑跑cnn, rnn太慢? 还在为自己电脑没有好的gpu而苦恼? 程序一跑一俩天连睡觉也要开着电脑训练? 如果你有这些烦恼何不考虑考虑使用谷歌的云平台呢?注册之后即送300美元噢-下面我就来介 ...
- windows下Anaconda3配置TensorFlow深度学习库
Anaconda3(python3.6)安装tensorflow Anaconda3中安装tensorflow3是非常简单的,仅需通过 pip install tensorflow 测试代码: imp ...
- 人工智能不过尔尔,基于Python3深度学习库Keras/TensorFlow打造属于自己的聊天机器人(ChatRobot)
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_178 聊天机器人(ChatRobot)的概念我们并不陌生,也许你曾经在百无聊赖之下和Siri打情骂俏过,亦或是闲暇之余与小爱同学谈 ...
- 30个深度学习库:按Python、C++、Java、JavaScript、R等10种语言分类
30个深度学习库:按Python.C++.Java.JavaScript.R等10种语言分类 包括 Python.C++.Java.JavaScript.R.Haskell等在内的一系列编程语言的深度 ...
- TensorFlow和深度学习入门教程(TensorFlow and deep learning without a PhD)【转】
本文转载自:https://blog.csdn.net/xummgg/article/details/69214366 前言 上月导师在组会上交我们用tensorflow写深度学习和卷积神经网络,并把 ...
- TensorFlow和深度学习新手教程(TensorFlow and deep learning without a PhD)
前言 上月导师在组会上交我们用tensorflow写深度学习和卷积神经网络.并把其PPT的參考学习资料给了我们, 这是codelabs上的教程:<TensorFlow and deep lear ...
- Kelp.Net是一个用c#编写的深度学习库
Kelp.Net是一个用c#编写的深度学习库 基于C#的机器学习--c# .NET中直观的深度学习 在本章中,将会学到: l 如何使用Kelp.Net来执行自己的测试 l 如何编写测试 l ...
- 深度学习库 SynapseML for .NET 发布0.1 版本
2021年11月 微软开源一款简单的.多语言的.大规模并行的机器学习库 SynapseML(以前称为 MMLSpark),以帮助开发人员简化机器学习管道的创建.具体参见[1]微软深度学习库 Synap ...
随机推荐
- vxWorks下intel82567v3网卡驱动的更新
/* 82567 devicesID */ #define INTEL_DEVICEID_82567LF 0x10BF#define INTEL_DEVICEID_82567 ...
- 最小生成树 TOJ 4117 Happy tree friends
链接http://acm.tju.edu.cn/toj/showp4117.html 4117. Happy tree friends Time Limit: 1.0 Seconds Memo ...
- tomcat原理(一)server.xml中的host虚拟主机的理解
一.Tomcat服务器端口的配置 Tomcat的所有配置都放在conf文件夹之中,里面的server.xml文件是配置的核心文件. 如果想修改Tomcat服务器的启动端口,则可以在server.xml ...
- Docker 小记 — MySQL 与 Redis 配置
前言 本篇随笔是继 "Docker Engine" 与 "Compose & Swarm" 之后的一个实例补充,初衷是记录测试环境中的一次 MySQL ...
- Python--urllib3库详解1
Python--urllib3库详解1 Urllib3是一个功能强大,条理清晰,用于HTTP客户端的Python库,许多Python的原生系统已经开始使用urllib3.Urllib3提供了很多pyt ...
- 【NOIP2016】换教室(动态规划)
题目戳我 题解 其实感觉16年的难度不是很大???? 这道题去年考场上DP都想出来了... 只是因为不会数学期望...然后GG.... 这道题目只要把数学期望搞出来就可以啦 设f[i][j][0/1] ...
- [Luogu4175][CTSC2008]网络管理Network
又是权限题qwq 一句话题意:带修改树上路径第k大 sol 数据结构?还是再见吧.学一手合格的整体二分,只有思维强大,才能见题拆题. 如果你做过整体二分的动态区间第k大就会发现这是一样的题. 无非是区 ...
- [BZOJ2298] [HAOI2011] problem a (dp)
Description 一次考试共有n个人参加,第i个人说:“有ai个人分数比我高,bi个人分数比我低.”问最少有几个人没有说真话(可能有相同的分数) Input 第一行一个整数n,接下来n行每行两个 ...
- xx-net连接教程
第一步:安装xx-net 在github上下载xx-net,网址 解压后点击运行start.bat文件,此时会提醒是不信任的文件,此时在系统偏好设置里的安全性与隐私去设置让它能打开. 第二步:安装Sw ...
- webapi下的web请求
先看webapi提供的服务: [HttpPost] public ResultBaseModel SiteList(SiteModel param) { ResultBaseModel resultM ...