网络流24题 P1251 餐巾计划问题 拆点
题目描述
一个餐厅在相继的 NN 天里,每天需用的餐巾数不尽相同。假设第 ii 天需要 r_iri块餐巾( i=1,2,...,N)。餐厅可以购买新的餐巾,每块餐巾的费用为 pp 分;或者把旧餐巾送到快洗部,洗一块需 m 天,其费用为 f 分;或者送到慢洗部,洗一块需 nn 天(n>mn>m),其费用为 ss 分(s<fs<f)。
每天结束时,餐厅必须决定将多少块脏的餐巾送到快洗部,多少块餐巾送到慢洗部,以及多少块保存起来延期送洗。但是每天洗好的餐巾和购买的新餐巾数之和,要满足当天的需求量。
试设计一个算法为餐厅合理地安排好 NN 天中餐巾使用计划,使总的花费最小。编程找出一个最佳餐巾使用计划。
我们知道,对于每一天,其实有两种状态:
一天开始状态,这个时候应该决定买多少新的餐巾数目,有没有从洗衣部送过来的东西
第一天结束,我们需要决定,是否需要对用过的餐巾进行封存,是否需要对把衣服送到两种洗衣部里面
那么很明显,一个点不能满足我们的需求,我们可以把点进行拆分,分成白天和晚上,对应有6种情况
我们需要从起点连接每个白天,流量限制,费用为p,代表这个的餐巾选择新购买的数目
从起点再连接每个点的晚上,流量限制为这一天所需的餐巾数目,代表这一天一定会产生这么多的用过的餐巾
从每天早上连接到汇点流量限制为这一天所需的餐巾数目,代表这白天一定会消耗这么多餐巾
由于可以把用过的餐巾存起来,我们把每个晚上的餐巾存到第二天从餐巾,流量为今天用的餐巾数目,费用为0
我们可以把餐巾送到快洗部,那么应该这天晚上的餐巾,送到洗完的那一天的早上,流量上限是INF(因为可能有以前存的衣服),费用为快洗部的费用
也可以把餐巾送到慢洗部,那么应该这天晚上的餐巾,送到洗完的那一天的早上,流量上限是INF(因为可能有以前存的衣服),费用为慢洗部的费用
注意拆点的话,可以把点拆成i和i+n
代码:
#include<iostream>
#include<string.h>
#include<algorithm>
#include<stdio.h>
#include<queue>
#define LL long long
using namespace std;
const LL N = 3e4+,M = 4e6+;
const LL INF = 0x3f3f3f3f;
LL ver[M],edge[M],cost[M],Next[M],head[N];
LL d[N],incf[N],pre[N],v[N],a[N];
LL n,k,tot,s,t,maxflow;
LL ans;
void add(LL x,LL y,LL z,LL c){
ver[++tot]=y,edge[tot]=z,cost[tot]=c;
Next[tot]=head[x],head[x]=tot; ver[++tot]=x,edge[tot]=,cost[tot]=-c;
Next[tot]=head[y],head[y]=tot;
}
bool spfa(){
queue<LL>q;
for (LL i=;i<=N;i++){
d[i]=INF;
}
memset(v,,sizeof(v));
q.push(s);
d[s]=;
v[s]=;
incf[s]=INF;
while(q.size()){
LL x=q.front();
v[x]=;
q.pop();
for (int i=head[x];i;i=Next[i]){
if(!edge[i])
continue;
int y=ver[i];
if (d[y]>d[x]+cost[i] && edge[i]>){
d[y]=d[x]+cost[i];
incf[y]=min(incf[x],edge[i]);
pre[y]=i;
if (!v[y])v[y]=,q.push(y);
}
}
}
if (d[t]==INF)return false;
return true;
}
void update(){
int x=t;
while(x!=s){
int i=pre[x];
edge[i]-=incf[t];
edge[i^]+=incf[t];
x=ver[i^];
}
maxflow+=incf[t];
ans+=d[t]*incf[t];
}
int main(){
LL q_day,q_w,s_day,s_w,p,
maxflow=;
ans=;
tot=;
scanf("%lld",&n);
s=*n+;
t=*n+;
for (LL i=;i<=n;i++){
scanf("%lld",&a[i]);
}
scanf("%lld%lld%lld%lld%lld",&p,&q_day,&q_w,&s_day,&s_w);
for (LL i=;i<=n;i++){
add(s,i,INF,p);
add(s,i+n,a[i],);
add(i,t,a[i],);
if (i<n)add(i+n,i+n+,INF,);
if (i+q_day<=n){
add(i+n,i+q_day,INF,q_w);
}
if (i+s_day<=n){
add(i+n,i+s_day,INF,s_w);
}
}
while(spfa())update();
printf("%lld\n",ans);
return ;
}
网络流24题 P1251 餐巾计划问题 拆点的更多相关文章
- Libre 6008 「网络流 24 题」餐巾计划 (网络流,最小费用最大流)
Libre 6008 「网络流 24 题」餐巾计划 (网络流,最小费用最大流) Description 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,-,N).餐厅可以从三种途径获得餐巾. ...
- LibreOJ #6008. 「网络流 24 题」餐巾计划 最小费用最大流 建图
#6008. 「网络流 24 题」餐巾计划 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- LOJ #6008. 「网络流 24 题」餐巾计划
#6008. 「网络流 24 题」餐巾计划 题目描述 一个餐厅在相继的 n nn 天里,每天需用的餐巾数不尽相同.假设第 i ii 天需要 ri r_iri 块餐巾.餐厅可以购买新的餐巾,每块餐 ...
- [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划
[luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...
- 【刷题】LOJ 6008 「网络流 24 题」餐巾计划
题目描述 一个餐厅在相继的 \(n\) 天里,每天需用的餐巾数不尽相同.假设第 \(i\) 天需要 \(r_i\) 块餐巾.餐厅可以购买新的餐巾,每块餐巾的费用为 \(P\) 分:或者把旧餐巾送到快洗 ...
- LibreOJ #6008. 「网络流 24 题」餐巾计划
这道题其实我在刚学 OI 的时候就在一本通上看见过,还记得上面写着"新餐巾一次性买完"之类的话.当时还很稚嫩(现在也是),想了好久,根本想不出来. 学了网络流之后发现这道题的图也是 ...
- Cogs 727. [网络流24题] 太空飞行计划(最大权闭合子图)
[网络流24题] 太空飞行计划 ★★☆ 输入文件:shuttle.in 输出文件:shuttle.out 简单对比 时间限制:1 s 内存限制:128 MB [问题描述] W 教授正在为国家航天中心计 ...
- P4480 「BJWC2018」「网络流与线性规划24题」餐巾计划问题
刷了n次用了奇淫技巧才拿到rk1,亥 这道题是网络流二十四题中「餐巾计划问题」的加强版. 于是怀着试一试的心情用费用流交了一发: 哇塞,过了9个点!(强烈谴责出题人用*造数据 下面是费用流解法简述: ...
- 【hjmmm网络流24题补全计划】
本文食用方式 按ABC--分层叙述思路 可以看完一步有思路后自行思考 飞行员配对问题 题目链接 这可能是24题里最水的一道吧... 很显然分成两个集合 左外籍飞行员 右皇家飞行员 跑二分图最大匹配 输 ...
随机推荐
- hadoop 笔记(hive)
//**********************************//安装配置1. 修改配置文件 1.1 在conf文件夹下 touch hive-site.xml <configurat ...
- .NET Core 2.1来了!
太棒了! .NET Core 2.0正式发布至今已经过去了大半年,这大半年说长不长说短不短,这段时间里,我是充分地体会到了微软的诚意,那就是认认真真打造一个优秀的开源平台.这大半年的时间里,微软一直在 ...
- javaScript设计模式--观察者模式(observer)
观察者模式(observer):又被称为 发布-订阅者模式或者消息机制,定义了一种依赖关系,解决了主体对象与观察者之间功能耦合. 一.这样的需求 在实现自己的需求,而添加一些功能代码,但是又不想新添加 ...
- Spring Cloud实战的代码和视频位置
大家好,本博文的连接里包含了Spring Cloud实战的代码和视频位置. 代码下载连接: 视频下载连接:
- python中的编码与解码
编码与解码 首先,明确一点,计算机中存储的信息都是二进制的 编码/解码本质上是一种映射(对应关系),比如‘a’用ascii编码则是65,计算机中存储的就是00110101,但是显示的时候不能显 ...
- Java集合必会14问(精选面试题整理)
前言:把这段时间复习的关于集合类的东西整理出来,特别是HashMap相关的一些东西,之前都没有很注意1.7 ->> 1.8的变化问题,但后来发现这其实变化挺大的,而且很多整理的面试资料都没 ...
- 搞懂MySQL InnoDB事务ACID实现原理
前言 说到数据库事务,想到的就是要么都做修改,要么都不做.或者是ACID的概念.其实事务的本质就是锁和并发和重做日志的结合体.那么,这一篇主要讲一下InnoDB中的事务到底是如何实现ACID的. 原子 ...
- 关于Exceptionless的使用注意
大家都应该比较熟悉NLOG,我们知道log4net和nlog,也有其它的记日志框架.目前我们的生产环境使用nlog,而且对Exceptionless的对接也是无缝的.可能有人会问为什么不用ELK,主要 ...
- [转帖]无网络离线安装 vs2017
无网络离线安装 vs2017 公司电脑禁止,只有一个老的vs2017的安装目录(之前通过 --layout 安装时生成的离线文件).找了一圈百度,没能解决问题,最后,问bing,查微软的官方网站命令, ...
- QQ登录的那些坑
这几天在项目上面实现qq登录的功能,当功能做好后发现,同一个qq号登录之后腾讯返回的openid并不一样....(天啦噜啊~)然后查询文档以及咨询客服才知道注册申请时是有一个固定的套路的(不得不说,如 ...