前言

封装隐藏了类内部细节,通过继承加虚函数的方式,我们还可以做到隐藏类之间的差异,这就是多态(运行时多态)。多态意味一个接口有多种行为,今天就来说说C++的多态是怎么实现的。

编译时多态感觉没什么好说的,编译时直接绑定了函数地址。

多态

有下面这么一段代码:A有两个虚函数(virtual关键字修饰的函数),B继承了A,还有一个参数为A*的函数foo()

#include <iostream>
class A
{
public:
    A();
    virtual void foo();
    virtual void bar();
private:
    int a;
};
A::A()
    : a( 1 )
{
}
void A::foo()
{
    std::cout << "A::foo()\n";
    return;
}
void A::bar()
{
    std::cout << "A::bar()\n";
    return;
}

class B : public A
{
public:
    B();
    virtual void foo();
    virtual void bar();
private:
    int b ;
};
B::B()
    : b( 2 )
{
}
void B::foo()
{
    std::cout << "B::foo()\n";
    return;
}
void B::bar()
{
    std::cout << "B::bar()\n";
    return;
}
void foo( A* x )
{
    x->foo();
    x->bar();
    return;
}

我们要先知道,对于虚函数的重写,规则要求编译器必须根据实际类型调用对应的函数,而不是像重写普通成员函数那样,直接调用当前类型的函数。

假设bar()是一个非虚函数,B重写了bar(),那么即使x指向B的对象,在foo()调用x->bar()时也还是输出"A::bar()"

这段代码编译成动态库的话,编译器就无法确定foo()的入参x指向的对象是什么类型了(父类指针可以指向自身类型的对象或任意子类的对象),因此编译器就无法直接得出foo()bar()实际的函数地址,无法完成函数调用。这中间肯定发生了什么!

题外话:一旦函数重写,A::foo()B::foo()就是两个函数,两个地址。如果只是单纯继承的话,之前介绍继承的时候说过,子类是不存在B:;foo()这个函数,而只是让编译器允许通过B类型的对象调用A::foo()

如何确定实际函数地址

一旦无法自然地想通一个流程,觉得中间缺了什么东西时,那肯定是编译器干了什么。因此还是要祭出gdb这件大杀器。

// 省略前面那段代码
int main()
{
    B* x = new B;
    foo( x );
    return 0;
}

当我们打印x的内容时,会发现其多了一个位于对象的首地址的_vptr.A,它其实指向了虚函数表

(gdb) p *x
$2 = {<A> = {_vptr.A = 0x400a70 <vtable for B+16>, a = 1}, b = 2}

foo()中的x->foo()x->bar()对应着如下汇编

    # x->foo()
   0x0000000000400815 <+8>: mov    %rdi,-0x8(%rbp) # 将rdi中的对象地址保存到-0x8(%rbp) 中
=> 0x0000000000400819 <+12>:    mov    -0x8(%rbp),%rax
   0x000000000040081d <+16>:    mov    (%rax),%rax  # 取对象首地址的8个字节也就是_vptr.A 0x400a70保存到rax中
   0x0000000000400820 <+19>:    mov    (%rax),%rax # 再取出0x400a70这个地址存放的4个字节数据保存到rax中,其实就是B::foo()函数地址
   0x0000000000400823 <+22>:    mov    -0x8(%rbp),%rdx # 将对象地址保存到rdx中
   0x0000000000400827 <+26>:    mov    %rdx,%rdi # 将对象地址保存到rdi中,作为虚函数foo()的参数
   0x000000000040082a <+29>:    callq  *%rax  # 调用B::foo()
    # x->bar()
   0x000000000040082c <+31>:    mov    -0x8(%rbp),%rax
   0x0000000000400830 <+35>:    mov    (%rax),%rax # 取对象首地址的8个字节也就是_vptr.A 0x400a70保存到rax中
   0x0000000000400833 <+38>:    add    $0x8,%rax # 跳过8字节,即0x400a70+8
   0x0000000000400837 <+42>:    mov    (%rax),%rax # 取出B::bar()的地址
   0x000000000040083a <+45>:    mov    -0x8(%rbp),%rdx
   0x000000000040083e <+49>:    mov    %rdx,%rdi
   0x0000000000400841 <+52>:    callq  *%rax # 调用B::bar()

看一下0x400a70这个地址的内容,更容易理解上面的汇编。

(gdb) x /4x 0x400a70
0x400a70 <_ZTV1B+16>:   0x0040095e  0x00000000  0x0040097c  0x00000000
(gdb) x 0x0040095e
0x40095e <B::foo()>:    0xe5894855          # 0x0040095e就是B::foo()的首地址
(gdb) x 0x0040097c
0x40097c <B::bar()>:    0xe5894855          # 0x0040097c就是B::bar()的首地址

从上面可以看出,虚函数表类似于一个数组,其中每个元素是该类实现的虚函数地址,利用虚函数表,就执行正确的函数了。

何时设置虚函数表

既然虚函数表是类数据结构里的一部分,那它的初始化肯定就是在类的构造函数里了,让我们去找找。
下面是B::B()的一部分汇编,A::A()也类似只不过是将A的虚函数表地址赋值给_vptr.A

   0x0000000000400941 <+19>:    callq  0x4008d2 <A::A()>        # 先构造父类
   0x0000000000400946 <+24>:    mov    -0x8(%rbp),%rax
   0x000000000040094a <+28>:    movq   $0x400a70,(%rax)       # 将B的虚函数表地址0x400a70保存到对象的首地址中,即给_vptr.A赋值
   0x0000000000400951 <+35>:    mov    -0x8(%rbp),%rax
   0x0000000000400955 <+39>:    movl   $0x2,0xc(%rax)           # 初始化列表

题外话:在更新虚函数表和初始化列表之后,才执行我们显式写在B::B()中的代码。

每个类都有一个自己的虚函数表,这在编译时就确定了。如果子类没有实现虚函数,虚函数表里对应位置的函数地址就还是父类的函数地址。

隐晦的错误

从上面我们知道

  • 虚函数表中的元素顺序就是函数声明的顺序,这在编译时就固定了。
  • 执行虚函数时,只是取了虚函数表中对应偏移的元素(即函数地址)去执行,并没有做符号绑定。这个偏移是由虚函数声明顺序决定的。
    基于这两点,如果我们在真正构造B的地方修改了虚函数的声明顺序,就会导致函数调用出错。
    简单验证一下,将最开始的那段代码编译为动态库(liba.so),并在main.cpp中调换其函数声明顺序
class A
{
public:
    A();
    virtual void bar();
    virtual void foo();
private:
    int a;
};

class B : public A
{
public:
    B();
    virtual void bar();
    virtual void foo();
    int b;
};
void bar( A* x )
{
    x->foo();
    x->bar();
    return;
}
int main()
{
    B* b = new B;
    bar( b );
    return 0;
}

上面代码的输出是

B::bar()
B::foo()

与预期结果刚好相反

B::foo()
B::bar()

出现这样错误的原因就是在编译main.cpp时,编译器认为B::foo()是虚函数表的第二个元素,但实际在liba.so中B::foo()是虚函数表中的第一个元素。

强烈建议虚函数的声明顺序必须保持一致,而且增加虚函数时,只在尾部增加

结语

了解C++的多态实现后,对于理解其他语言的多态实现也是有益处的,本质都应当是在通过一个中间结构确定实际函数的地址。

除了以上内容外,还有

  • 不论是否能通过上下文判断出实际类型,只要是以指针方式调用虚函数,都会以虚函数表跳转的方式来调用函数。
  • 在构造函数中调用虚函数,并不会使用多态,而是直接调用函数地址。
    这两点通过上面的调试方法很容易就能确认。

gcc version 4.8.5

C++系列总结——多态的更多相关文章

  1. 【JAVA零基础入门系列】Day13 Java类的继承与多态

    继承是类的一个很重要的特性,什么?你连继承都不知道?你是想气死爸爸好继承爸爸的遗产吗?(滑稽) 开个玩笑,这里的继承跟我们现实生活的中继承还是有很大区别的,一个类可以继承另一个类,继承的内容包括属性跟 ...

  2. 夯实Java基础系列23:一文读懂继承、封装、多态的底层实现原理

    本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查看 https://github.com/h2pl/Java-Tutorial 喜欢的话麻烦点下 ...

  3. iOS开发笔记系列-基础3(多态、动态类型和动态绑定)

    多态:相同的名称,不同的类 使不同的类共享相同方法名称的能力成为多态.它让你可以开发一组类,这组类中的每一个类都能响应相同的方法名.每个类的定义都封装了响应特定方法所需要的代码,这使得它独立于其他的类 ...

  4. [Effective C++系列]-为多态基类声明Virtual析构函数

    Declare destructors virtual in polymorphic base classes.   [原理] C++指出,当derived class对象经由一个由base clas ...

  5. 红豆带你从零学C#系列之:初识继承与多态

    继承 现实生活当中,人类又可以根据职业分为:教师,学生,理发师,售货员 又比如飞机又有种类之分:直升飞机.客机.货机.战斗机等 在程序里面我们可能会通过创建类来描述这样的事物,比如学生类.教师类.理发 ...

  6. Java入门系列(三)面向对象三大特性之封装、继承、多态

    面向对象综述 封装 封装的意义,在于明确标识出允许外部使用的所有成员函数和数据项,或者叫接口. 有了封装,就可以明确区分内外,使得类实现者可以修改封装内的东西而不影响外部调用者:而外部调用者也可以知道 ...

  7. 程序基石系列之C++多态的前提条件

    准备知识 C++中多态(polymorphism)有下面三个前提条件: 必须存在一个继承体系结构. 继承体系结构中的一些类必须具有同名的virtual成员函数(virtualkeyword) 至少有一 ...

  8. Java面向对象系列(10)- 什么是多态

    多态 即同一方法可以根据发送对象的不同而采取不同的行为方式 一个对象的实际类型是确定的,但可以指向对象的引用类型有很多 多态存在的条件 有继承关系 子类重写父类方法 父类引用指向子类对象 注意:多态是 ...

  9. 【Java学习系列】第3课--Java 高级教程

    本文地址 可以拜读: 从零开始学 Java 分享提纲: 1. Java数据结构 2. Java 集合框架 3. Java泛型 4. Java序列化 5. Java网络编程 6. Java发送Email ...

随机推荐

  1. Git操作中crlf和lf冲突问题

    多人参与项目开发的时候,经常会遇到代码格式化不一致,在提交的时候出现很多冲突的情况.其中换行符冲突就是一种,在不同的系统平台上是不一样的.UNIX/Linux 使用的是 0x0A(LF),早期的 Ma ...

  2. 使用Rotativa在ASP.NET Core MVC中创建PDF

    在本文中,我们将学习如何使用Rotativa.AspNetCore工具从ASP.NET Core中的视图创建PDF.如果您使用ASP.NET MVC,那么Rot​​ativa工具已经可用,我们可以使用 ...

  3. 学习CSS3之实心圆

    CSS3是最新版本的CSS,学习后可以更好的用于工作及自己修改自己代码的各种样式. border-radius圆角方法画实心圆.相当于在长方形(正方形)上画半径为边长一半的圆弧. 效果如上图,代码如下 ...

  4. Python爬虫入门这一篇就够了

    何谓爬虫 所谓爬虫,就是按照一定的规则,自动的从网络中抓取信息的程序或者脚本.万维网就像一个巨大的蜘蛛网,我们的爬虫就是上面的一个蜘蛛,不断的去抓取我们需要的信息. 爬虫三要素 抓取 分析 存储 基础 ...

  5. Java工程师必备书单

    微信公众号[程序员江湖] 作者黄小斜,斜杠青年,某985硕士,阿里 Java 研发工程师,于 2018 年秋招拿到 BAT 头条.网易.滴滴等 8 个大厂 offer,目前致力于分享这几年的学习经验. ...

  6. 分享波面经【2年经验】【linux c++】

    快三个月没写博客了,一直在忙着准备面试和去面试的路上,所以没时间写,也没什么想写的.现在告一段落,就总结一波! 面经 很感谢一些公司能给我面试机会,有的公司真的会拿学历卡人,也不想多说! 17年毕业, ...

  7. headfirst设计模式(7)—命令模式

    一.前言 什么是命令模式? 在软件系统中,“行为请求者”与“行为实现者”通常呈现一种“紧耦合”.但在某些场合,比如要对行为进行“记录.撤销/重做.事务”等处理,这种无法抵御变化的紧耦合是不合适的.在这 ...

  8. ArcGIS API for JavaScript 入门教程[6] 再讲数据——Map类之可操作图层

    [回顾]上篇交代了Map是各种图层(不管是实际上的图层还是由图层构成的对象)的容器,是数据的容器,并不作显示(由视图类绘制).并重点讲解了由图层构成的复杂图层——高程属性ground和底图属性base ...

  9. openlayers4 入门开发系列之地图展示篇(附源码下载)

    前言 openlayers4 官网的 api 文档介绍地址 openlayers4 api,里面详细的介绍 openlayers4 各个类的介绍,还有就是在线例子:openlayers4 官网在线例子 ...

  10. SQL 游标的写法

    DECLARE @A varchar(200),@B varchar(200),@C datetime ----定义变量 DECLARE cursor CURSOR FOR --定义游标 SELECT ...