D. Make a Permutation!
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Ivan has an array consisting of n elements. Each of the elements is an integer from 1 to n.

Recently Ivan learned about permutations and their lexicographical order. Now he wants to change (replace) minimum number of elements in his array in such a way that his array becomes a permutation (i.e. each of the integers from 1 to n was encountered in his array exactly once). If there are multiple ways to do it he wants to find the lexicographically minimal permutation among them.

Thus minimizing the number of changes has the first priority, lexicographical minimizing has the second priority.

In order to determine which of the two permutations is lexicographically smaller, we compare their first elements. If they are equal — compare the second, and so on. If we have two permutations x and y, then x is lexicographically smaller if xi < yi, where i is the first index in which the permutations x and y differ.

Determine the array Ivan will obtain after performing all the changes.

Input

The first line contains an single integer n (2 ≤ n ≤ 200 000) — the number of elements in Ivan's array.

The second line contains a sequence of integers a1, a2, ..., an (1 ≤ ai ≤ n) — the description of Ivan's array.

Output

In the first line print q — the minimum number of elements that need to be changed in Ivan's array in order to make his array a permutation. In the second line, print the lexicographically minimal permutation which can be obtained from array with q changes.

Examples
input
4
3 2 2 3
output
2
1 2 4 3
input
6
4 5 6 3 2 1
output
0
4 5 6 3 2 1
input
10
6 8 4 6 7 1 6 3 4 5
output
3
2 8 4 6 7 1 9 3 10 5
Note

In the first example Ivan needs to replace number three in position 1 with number one, and number two in position 3 with number four. Then he will get a permutation [1, 2, 4, 3] with only two changed numbers — this permutation is lexicographically minimal among all suitable.

In the second example Ivan does not need to change anything because his array already is a permutation.

贪心

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
using namespace std; int n,a[],boo[],b[],c[],tot,ans; int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
boo[a[i]]++;
}
tot=;
for(int i=;i<=n;i++)
if(!boo[i]){
tot++;
b[tot]=i;
}
b[tot+]=n+;
int k=; ans=;
for(int i=;i<=n;i++)
if(boo[a[i]]>){
if(!c[a[i]]&&b[k]>a[i]){
c[a[i]]=;
continue;
}
boo[a[i]]--;
ans++;
a[i]=b[k];
k++;
}
printf("%d\n",ans);
for(int i=;i<n;i++)
printf("%d ",a[i]);
printf("%d",a[n]);
}

Codeforce D. Make a Permutation!的更多相关文章

  1. codeforce 849D. Make a Permutation!

    D. Make a Permutation! time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  2. codeforce 436 D贪心思维题Make a Permutation!

    D. Make a Permutation! time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  3. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  4. [LeetCode] Palindrome Permutation II 回文全排列之二

    Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...

  5. [LeetCode] Palindrome Permutation 回文全排列

    Given a string, determine if a permutation of the string could form a palindrome. For example," ...

  6. [LeetCode] Permutation Sequence 序列排序

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  7. [LeetCode] Next Permutation 下一个排列

    Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...

  8. Leetcode 60. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  9. UVA11525 Permutation[康托展开 树状数组求第k小值]

    UVA - 11525 Permutation 题意:输出1~n的所有排列,字典序大小第∑k1Si∗(K−i)!个 学了好多知识 1.康托展开 X=a[n]*(n-1)!+a[n-1]*(n-2)!+ ...

随机推荐

  1. 积累jquery一些有意思的函数

    $("#btn").unbind("click"); // 让btn这个元素的点击事件失效 $("#btn").unbind(); // 让 ...

  2. Linux系统Java环境安装配置

    jdk安装配置 首先下载JDK和JRE,这里你的需要看看你的Linux系统是多少位的,比如我的是64位的: 下载JDK并指定到Download目录,JRE同样操作: 解压并且配置环境: tar -zx ...

  3. 【JavaScript 实现当前动态时间】

    实现一个简单动态的当前时间 <!doctype html> <html lang="en"> <head> <meta charset=& ...

  4. cs231n spring 2017 lecture1 Introduction to Convolutional Neural Networks for Visual Recognition 听课笔记

    1. 生物学家做实验发现脑皮层对简单的结构比如角.边有反应,而通过复杂的神经元传递,这些简单的结构最终帮助生物体有了更复杂的视觉系统.1970年David Marr提出的视觉处理流程遵循这样的原则,拿 ...

  5. Two 观察者 observer pattern

    Two 观察者 定义 在对象之间定义一对多的依赖,当一个对象改变状态,依赖它的对象都会收到通知.并自动更新. 可以观察者自取,也可以主题去推送 其实就是设计两个接口. 相关原则 为交互对象之前的松耦合 ...

  6. HDU5135 dfs搜索 枚举种数

    Little Zu Chongzhi's Triangles Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 512000/512000 ...

  7. Spring学习日志之Glance

    Spring的本质 Spring最根本的意图只有一个:简化Java开发 Spring的核心主要有两个: 依赖注入 AOP Spring容器 Spring容器负责对对象进行创建,装配,配置并管理它们的整 ...

  8. Hbuilder实用技巧

    转自:http://blog.csdn.net/qq_34099161/article/details/51451712 1. Q:怎么实现代码追踪? A:在编辑代码时经常会出现需要跳转到引用文件或者 ...

  9. radiobutton独特属性

    radiobutton是通过name来分组的,也就是说,使用相同的名字的radio,它们才是单选的,如果名字不同的radio,是不具备这个效果的,这个是第一要点. 第二,针对不同的radio(name ...

  10. HDU 2119 Matrix

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2119 解题思路: 处理数据,使用公式最小点覆盖数=最大匹配数,使用匈牙利算法求二分图最大匹配即可. ...