循环神经(LSTM)网络学习总结
摘要:
1.算法概述
2.算法要点与推导
3.算法特性及优缺点
4.注意事项
5.实现和具体例子
6.适用场合
内容:
1.算法概述
长短期记忆网络(Long Short Term Memory networks) 通常叫做 “LSTM”,由Hochreiter & Schmidhuber (1997)提出,一个LSTM Cell图示如下:

现在,我们先来定义一下用到的符号:

在网络结构图中,每条线都传递着一个向量。其中上面一条直线表示LSTM的状态向量的传递;下面一条直线表示由LSTM的上一层输出和这一层输入组成的合并向量的传递;
粉红色的圆圈表示逐点操作,这里涉及到1.两个输入向量各个元素相加;2.两个输入向量各个元素相乘,即矩阵的哈达玛积(hadamard product)。
黄色的矩形框表示的是一个神经网络层(就是很多个神经节点);
合并的线表示把两条线上所携带的向量进行合并;
分开的线表示将线上传递的向量复制一份,传给两个地方。
一个LSTM Cell是由3个门限结构和1个状态向量传输线组成的,门限分别是遗忘门,传入门,输出门;
其中状态向量传输线负责长程记忆,因为它只做了一些简单的线性操作;3个门限负责短期记忆的选择,因为门限设置可以对输入向量做删除或者添加操作;
1.1遗忘门:
遗忘门是通过一个sigmoid 神经层来实现的。 0 表示“不让任何信息通过”, 1 表示“让所有信息通过”。它的作用是要决定让哪些信息继续通过这个 cell。

1.2传入门:
传入门实现需要两个步骤:首先,一个sigmoid 层决定哪些信息需要更新;一个 tanh 层生成一个备选的用来更新的内容;
再下一步,我们把这两部分联合(向量点乘)起来,对 cell 的状态进行一个更新。它的作用是决定让多少新的信息加入到 cell 状态中来。

1.3输出门
输出门实现需要两个步骤:首先通过一个sigmoid层来决定哪部分信息会被输出;
接着,我们把状态向量通过一个 tanh 层,然后把 tanh 层的输出和 sigmoid 层计算出来的权重相乘,这样就得到了最后输出的结果。
输出门的作用是决定输出什么值。

1.4 LSTM cell状态更新:
首先我们把旧的状态和遗忘门的输出相乘, 把一些不想保留的信息忘掉;然后加上输入门的输出,这部分信息就是我们要添加的新内容。

2.算法要点与推导
符号说明:这里的“*”代表矩阵的哈达玛积(hadamard product)
2.1LSTM前向传播公式:

其中设计到参数Wf,Wi,Wc,Wo,bf,bi,bc,bo
2.2LSTM后向传播公式:

(译)理解 LSTM 网络 (Understanding LSTM Networks by colah)
3.算法特性及优缺点
优点:可以拟合序列数据,通过遗忘门和输出门忘记部分信息来解决梯度消失的问题。
缺点:
4.注意事项
5.实现和具体例子
《TensorFlow实战》实现BiLSTM处理Mnist数据
tensorflow-char-rnn_model处理莎士比亚诗集
6.适用场合
循环神经(LSTM)网络学习总结的更多相关文章
- [深度学习]理解RNN, GRU, LSTM 网络
Recurrent Neural Networks(RNN) 人类并不是每时每刻都从一片空白的大脑开始他们的思考.在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义 ...
- 循环神经网络与LSTM网络
循环神经网络与LSTM网络 循环神经网络RNN 循环神经网络广泛地应用在序列数据上面,如自然语言,语音和其他的序列数据上.序列数据是有很强的次序关系,比如自然语言.通过深度学习关于序列数据的算法要比两 ...
- 深度学习|基于LSTM网络的黄金期货价格预测--转载
深度学习|基于LSTM网络的黄金期货价格预测 前些天看到一位大佬的深度学习的推文,内容很适用于实战,争得原作者转载同意后,转发给大家.之后会介绍LSTM的理论知识. 我把code先放在我github上 ...
- 深度学习 循环神经网络 LSTM 示例
最近在网上找到了一个使用LSTM 网络解决 世界银行中各国 GDP预测的一个问题,感觉比较实用,毕竟这是找到的唯一一个可以正确运行的程序. #encoding:UTF-8 import pandas ...
- 吴裕雄--天生自然神经网络与深度学习实战Python+Keras+TensorFlow:使用TensorFlow和Keras开发高级自然语言处理系统——LSTM网络原理以及使用LSTM实现人机问答系统
!mkdir '/content/gdrive/My Drive/conversation' ''' 将文本句子分解成单词,并构建词库 ''' path = '/content/gdrive/My D ...
- [译] 理解 LSTM 网络
原文链接:http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 吴恩达版:http://www.ai-start.com/dl2017/h ...
- [译] 理解 LSTM(Long Short-Term Memory, LSTM) 网络
本文译自 Christopher Olah 的博文 Recurrent Neural Networks 人类并不是每时每刻都从一片空白的大脑开始他们的思考.在你阅读这篇文章时候,你都是基于自己已经拥有 ...
- (译)理解 LSTM 网络 (Understanding LSTM Networks by colah)
@翻译:huangyongye 原文链接: Understanding LSTM Networks 前言:其实之前就已经用过 LSTM 了,是在深度学习框架 keras 上直接用的,但是到现在对LST ...
- [转] 理解 LSTM 网络
[译] 理解 LSTM 网络 http://www.jianshu.com/p/9dc9f41f0b29 Recurrent Neural Networks 人类并不是每时每刻都从一片空白的大脑开始他 ...
随机推荐
- PyCharm中HTML页面CSS class名称自动完成功能失效的问题
如果这个HTML页面带有style元素的CSS定义,那class name自动完成功能就失效了 Pycharm Version:5.03
- Ocelot中文文档-Websockets
Ocelot额外支持代理websockets.这个功能在问题 212中被提出. 为了是Ocelot代理websocket,你需要做如下事情. 在你的Configure方法中,你要告知应用程序使用Web ...
- Java并发-取消与关闭
如果外部代码可以再某个操作正常完成之前就将其置入"完成"状态,那么这个操作就是可以取消的.取消的原因有:用户请求取消.有时间限制的操作.应用程序事件.错误和关闭等 中断 如果使用某 ...
- nginx安装配置+集群tomcat:Centos和windows环境
版本:nginx-1.8.0.tar.gz 官网:http://nginx.org/en/download.html 版本:apache-tomcat-6.0.44.tar.gz 官 ...
- css 选择器【转】
最近在研究jQuery的选择器,大家知道jQuery的选择器和css的选择器非常相似,所以整理一下css选择器: css1-css3提供非常丰富的选择器,但是由于某些选择器被各个浏览器支持的情况不一样 ...
- ASP.NET中直接用C# 动态修改CSS样式
ASP.NET中直接用C# 动态修改CSS样式 wonsoft (wonsoft@163.com) 使用JavaScript控制CSS样式有点麻烦,还是觉得直接使用C#操作更方便快捷,本文通过两个B ...
- Django rest framework(5)----解析器
目录 Django rest framework(1)----认证 Django rest framework(2)----权限 Django rest framework(3)----节流 Djan ...
- 团队项目第二阶段个人进展——Day7
一.昨天工作总结 冲刺第七天,动手完成了一个demo来实现数据的上传与下载 二.遇到的问题 代码逻辑没看太懂 三.今日工作规划 对发布页面的数据进行处理,实现能够请求和响应,并学习如何实现图片的上传与 ...
- HTML语义化基础
body { background-color: rgb(60,60,60) } 为使页面呈现较好的内容结构,所以对网页进行布局时,将页面相关元素集中在一起,形成页眉.文章.页脚.侧边栏等元素块,刚开 ...
- Flask构建微电影(一)
第一章.项目介绍 1.1.前言 本教程我将带领大家如何使用flask框架开发微电影网站.Flask是python中最受欢迎的轻量级web框架,flask扩展丰富,冗余度小,可自由选择组合各种插 ...