hdu 4897 树链剖分(重轻链)
Little Devil I
Time Limit: 16000/8000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 894 Accepted Submission(s): 296
The devil likes to make thing in chaos. This kingdom’s road system is like simply a tree(connected graph without cycle). A road has a color of black or white. The devil often wants to make some change of this system.
In details, we call a path on the tree from a to b consists of vertices lie on the shortest simple path between a and b. And we say an edge is on the path if both its two endpoints is in the path, and an edge is adjacent to the path if exactly one endpoint of it is in the path.
Sometimes the devil will ask you to reverse every edge’s color on a path or adjacent to a path.
The king’s daughter, WJMZBMR, is also a cute loli, she is surprised by her father’s lolicon-like behavior. As she is concerned about the road-system’s status, sometimes she will ask you to tell there is how many black edge on a path.
Initially, every edges is white.
For each test case, the first line contains an integer n, which is the size of the tree. The vertices be indexed from 1.
On the next n-1 lines, each line contains two integers a,b, denoting there is an edge between a and b.
The next line contains an integer Q, denoting the number of the operations.
On the next Q lines, each line contains three integers t,a,b. t=1 means we reverse every edge’s color on path a to b. t=2 means we reverse every edge’s color adjacent to path a to b. t=3 means we query about the number of black edge on path a to b.
T<=5.
n,Q<=10^5.
Please use scanf,printf instead of cin,cout,because of huge input.
10
2 1
3 1
4 1
5 1
6 5
7 4
8 3
9 5
10 6
10
2 1 6
1 3 8
3 8 10
2 3 4
2 10 8
2 4 10
1 7 6
2 7 3
2 1 4
2 10 10
/*
hdu 4897 树链剖分(重轻链) problem:
给你一棵树,初始每条边为白色,然后是三种操作
1.将u->v链上面的所有边的颜色翻转 (例:white -> black)
这个在线段树上很好处理,用个翻转标记,然后记录数量即可
2.将u->v链上面所有邻接的边翻转(边上只有一个点在链上面)
3.询问u->v上面有多少黑色的边 solve:
对于1,3操作树链剖分很好解决。但是在操作2上面就GG了.所以去参考了很多博客 - -,很久才明白大致思路 就操作2而言,主要可以看成在一条重链上面的 和 跨越了很多重轻链的那种.
主要是轻链两端连接的是重链,所以在操作2的时候可以考虑直接在每个点上面打标记(除了有的叶子节点,重链基本上
覆盖了所有的点).
所以轻链的颜色就是: 左端点rev2^右端点rev2^边的颜色(边的颜色线段树很好维护的)
如果重链分成很多条边来用也可以实现,但是无疑到达lca的效率为很低,所有需要考虑其他方法 然后就是维护重链上面的颜色,如果u,v在一条重链的中间部分,打标记可以维护对轻链的影响。所以只需要考虑对两端重链
的影响,于是把与两端相邻的边用操作1翻转就好了.在操作2下一条重链最多只需要更新左右两个端点,但是却有很多条
轻链。 所以重链可以直接更新,轻链则需要标记来维护了。 因为没有判断,有时线段树会出现l>r导致RE了很久- -
hhh-2016-08-18 21:18:55
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define key_val ch[ch[root][1]][0]
using namespace std;
const int maxn = 200100;
const int inf = 0x3f3f3f3f;
int head[maxn],tot,pos,son[maxn];
int top[maxn],fp[maxn],fa[maxn],dep[maxn],num[maxn],p[maxn];
int n;
struct Edge
{
int to,next;
} edge[maxn<<2]; void ini()
{
tot = 0,pos = 1;
clr(head,-1),clr(son,-1);
} void add_edge(int u,int v)
{
edge[tot].to = v,edge[tot].next = head[u],head[u] = tot++;
} void dfs1(int u,int pre,int d)
{
// cout << u << " " <<pre <<" " <<d <<endl;
dep[u] = d;
fa[u] = pre,num[u] = 1;
for(int i = head[u]; ~i; i = edge[i].next)
{
int v = edge[i].to;
if(v != pre)
{
dfs1(v,u,d+1);
num[u] += num[v];
if(son[u] == -1 || num[v] > num[son[u]])
son[u] = v;
}
}
} void getpos(int u,int sp)
{
top[u] = sp;
p[u] = pos++;
fp[p[u]] = u;
if(son[u] == -1)return ;
getpos(son[u],sp);
for(int i = head[u]; ~i ; i = edge[i].next)
{
int v = edge[i].to;
if(v != son[u] && v != fa[u])
getpos(v,v);
}
} struct node
{
int l,r,mid;
int rev1,rev2;
int num;
} tree[maxn << 2]; void push_up(int i)
{
tree[i].num = tree[lson].num + tree[rson].num;
} void build(int i,int l,int r)
{
tree[i].l = l,tree[i].r = r;
tree[i].mid=(l+r) >>1;
tree[i].rev1 = tree[i].rev2 = 0;
tree[i].num = 0;
if(l == r)
{
// cout << fp[l] <<" " <<val[fp[l]]<<endl;
return;
}
build(lson,l,tree[i].mid);
build(rson,tree[i].mid+1,r);
} void push_down(int i)
{
if(tree[i].rev1)
{
tree[i].rev1 = 0;
tree[lson].rev1 ^= 1,tree[lson].num = tree[lson].r-tree[lson].l+1-tree[lson].num;
tree[rson].rev1 ^= 1,tree[rson].num = tree[rson].r-tree[rson].l+1-tree[rson].num;;
}
if(tree[i].rev2)
{
tree[i].rev2 = 0;
tree[lson].rev2 ^= 1;
tree[rson].rev2 ^= 1;
}
} void update_area(int i,int l,int r,int flag)
{
// cout <<"l:"<< l <<" r:"<<r <<" min:"<< tree[i].Min<<endl;
if(l > r)
return ;
if(tree[i].l >= l && tree[i].r <= r)
{
if(flag == 1)
{
tree[i].num = tree[i].r-tree[i].l+1-tree[i].num;
tree[i].rev1 ^= 1;
}
else
tree[i].rev2 ^= 1;
return ;
}
push_down(i);
int mid = tree[i].mid;
if(r <= mid)
update_area(lson,l,r,flag);
else if(l > mid)
update_area(rson,l,r,flag);
else
{
update_area(lson,l,mid,flag);
update_area(rson,mid+1,r,flag);
}
push_up(i);
} int query(int i,int l,int r,int flag)
{
if(l > r)
return 0;
if(tree[i].l >= l && tree[i].r <= r)
{
if(flag == 1)
return tree[i].num;
else
return tree[i].rev2;
}
push_down(i);
int mid = tree[i].mid;
if(r <= mid)
return query(lson,l,r,flag);
else if(l > mid)
return query(rson,l,r,flag);
else
return query(lson,l,mid,flag)+query(rson,mid+1,r,flag);
push_up(i);
} void update_rev1(int u,int v)
{
int f1 = top[u],f2 = top[v];
while(f1 != f2)
{
if(dep[f1] < dep[f2])
{
swap(f1,f2),swap(u,v);
}
update_area(1,p[f1],p[u],1);
u = fa[f1],f1 = top[u];
}
if(dep[u] > dep[v]) swap(u,v);
update_area(1,p[son[u]],p[v],1);
} void update_rev2(int u,int v)
{
int f1 = top[u],f2 = top[v];
// cout << u << " " <<v<<endl;
while(f1 != f2)
{
if(dep[f1] < dep[f2])
{
swap(f1,f2),swap(u,v);
}
update_area(1,p[f1],p[u],2);
int par = fa[f1];
if(son[par] == f1) update_area(1,p[f1],p[f1],1);
if(son[u] != -1) update_area(1,p[son[u]],p[son[u]],1);
u = fa[f1],f1 = top[u];
}
if(dep[u] > dep[v]) swap(u,v); update_area(1,p[u],p[v],2);
int par = fa[u];
// cout <<par <<" "<< son[v] <<endl;
if(son[par] == u && par > 0) update_area(1,p[u],p[u],1);
if(son[v] != -1) update_area(1,p[son[v]],p[son[v]],1);
} int Find(int u,int v)
{
// cout <<"*********************************************************"<<endl;
int f1 = top[u],f2 = top[v];
int ans = 0;
// cout << u << " " <<v<<endl; while(f1 != f2)
{
if(dep[f1] < dep[f2])
{
swap(f1,f2),swap(u,v);
}
ans += query(1,p[f1]+1,p[u],1);
// cout <<ans <<" " <<f1 <<" " <<u <<endl;
ans += query(1,p[fa[top[u]]],p[fa[top[u]]],2)^query(1,p[top[u]],p[top[u]],2)
^query(1,p[top[u]],p[top[u]],1);
// cout <<ans<<" "<<fa[f1]<<" "<<u <<endl;
u = fa[f1],f1 = top[u];
}
if(dep[u] > dep[v]) swap(u,v);
// cout << query(1,p[u]+1,p[v],1) <<endl;
return ans+query(1,p[u]+1,p[v],1);
} int main()
{
// freopen("in.txt","r",stdin);
int T,cas = 1,op;
int a,b;
int m,u,v;
scanf("%d",&T);
while(T--)
{
ini();
scanf("%d",&n);
for(int i =1; i <n; i++)
{
scanf("%d%d",&u,&v);
add_edge(u,v);
add_edge(v,u);
}
dfs1(1,0,0);
getpos(1,1);
build(1,1,pos-1);
scanf("%d",&m);
for(int i = 1; i <= m; i++)
{
scanf("%d%d%d",&op,&a,&b);
// cout << op <<" " <<a <<" " <<b<<endl;
if(op == 1)
{
if(a == b)
continue;
update_rev1(a,b);
}
else if(op == 2)
{
update_rev2(a,b);
}
else if(op == 3)
{
printf("%d\n",Find(a,b));
}
}
}
return 0;
}
hdu 4897 树链剖分(重轻链)的更多相关文章
- hdu 5893 (树链剖分+合并)
List wants to travel Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/O ...
- hdu 5274 树链剖分
Dylans loves tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
- hdu 5052 树链剖分
Yaoge’s maximum profit Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/ ...
- HDU 3966 (树链剖分+线段树)
Problem Aragorn's Story (HDU 3966) 题目大意 给定一颗树,有点权. 要求支持两种操作,将一条路径上的所有点权值增加或减少ai,询问某点的权值. 解题分析 树链剖分模板 ...
- hdu 3966(树链剖分+线段树区间更新)
传送门:Problem 3966 https://www.cnblogs.com/violet-acmer/p/9711441.html 学习资料: [1]线段树区间更新:https://blog.c ...
- HDU 3966 /// 树链剖分+树状数组
题意: http://acm.hdu.edu.cn/showproblem.php?pid=3966 给一棵树,并给定各个点权的值,然后有3种操作: I x y z : 把x到y的路径上的所有点权值加 ...
- HDU 5242 树链剖分思想的贪心
题意及博客 树链剖分分为2步,第一次求出深度,重儿子,第二次求出重链,用到了启发式的思想,即对于比较重的儿子,尽量去完整的维护它.类似于我们去合并两个堆,明显把小的堆逐个插入大的堆中会比大的往小的插更 ...
- hdu 4729 树链剖分
思路:这个树链剖分其实还是比较明显的.将边按权值排序后插入线段树,然后用线段树查找区间中比某个数小的数和,以及这样的数的个数.当A<=B时,就全部建新的管子. 对于A>B的情况比较 建一条 ...
- hdu 3966 树链剖分
思路:树链剖分入门题,我这门入得好苦啊,程序很快写出来了,可是在LCA过程中把update函数里的左右边界位置写反了,一直RE到死. #pragma comment(linker, "/ST ...
随机推荐
- router问题
var http = require("http"); var router = require("./router.js"); //创建服务器 var ser ...
- Python打包分发工具setuptools
作为Python标准的打包及分发工具,setuptools可以说相当地简单易用.它会随着Python一起安装在你的机器上.你只需写一个简短的setup.py安装文件,就可以将你的Python应用打包 ...
- 2017 清北济南考前刷题Day 3 morning
实际得分:100+0+0=100 T1 右上角是必败态,然后推下去 发现同行全是必胜态或全是必败态,不同行必胜必败交叉 列同行 所以n,m 只要有一个是偶数,先手必胜 #include<cstd ...
- python 面向对象之封装与类与对象
封装 一,引子 从封装本身的意思去理解,封装就好像是拿来一个麻袋,把小猫,小狗,小王八,小老虎一起装进麻袋,然后把麻袋封上口子.照这种逻辑看,封装='隐藏',这种理解是相当片面的 二,先看如何隐藏 在 ...
- eclipse开发Groovy代码,与java集成,maven打包编译
今天尝试了一下在eclipse里面写Groovy代码,并且做到和Java代码相互调用,折腾了一下把过程记录下来. 首先需要给eclipse安装一下Groovy的插件,插件地址:https://gith ...
- loadrunner录制时web时,安全证书问题
测试环境:win7+LoadRunner11+ie9 遇到的问题:用LoadRunner录制时,打开百度,总是报安全证书问题,如图所示 解决方法:Tools——Recording Options——p ...
- Mysql中autocommit的用法
定义 Mysql文档原文:SET autocommit disables or enables the default autocommit mode for the current session. ...
- Ecplise 配置本地 https 测试
今天做项目,需要关联Office 365.为了实现Office365的用户邮件信息与项目的实时同步,需要建立webhook订阅. Office 365 API 连接 https://graph.mi ...
- python 字符串 字节
字符串 字节 a. 字符串转字节 1 2 key = "xxxx" bkey = bytes(key,encoding='utf-8') b. bytearray 数组 1 2 ...
- c语言一个显示星号的函数(隐藏密码)
显示星号 void star(char p[]) //显示星号 { int j; while((p[j] = getch())!='\r') { if(p[j] !='\b') { pr ...