Different GCD Subarray Query

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 221    Accepted Submission(s): 58

Problem Description
This is a simple problem. The teacher gives Bob a list of problems about GCD (Greatest Common Divisor). After studying some of them, Bob thinks that GCD is so interesting. One day, he comes up with a new problem about GCD. Easy as it looks, Bob cannot figure it out himself. Now he turns to you for help, and here is the problem:
  
  Given an array a of N positive integers a1,a2,⋯aN−1,aN; a subarray of a is defined as a continuous interval between a1 and aN. In other words, ai,ai+1,⋯,aj−1,aj is a subarray of a, for 1≤i≤j≤N. For a query in the form (L,R), tell the number of different GCDs contributed by all subarrays of the interval [L,R].
  
 
Input
There are several tests, process till the end of input.
  
  For each test, the first line consists of two integers N and Q, denoting the length of the array and the number of queries, respectively. N positive integers are listed in the second line, followed by Q lines each containing two integers L,R for a query.

You can assume that 
  
    1≤N,Q≤100000 
    
   1≤ai≤1000000

 
Output
For each query, output the answer in one line.
 
Sample Input
5 3
1 3 4 6 9
3 5
2 5
1 5
 
Sample Output
6
6
6
/*
hdu 5869 区间不同GCD个数(树状数组) problem:
给你一组数, 然后是q个查询. 问[l,r]中所有区间GCD的值总共有多少个(不同的) solve:
感觉很像线段树/树状数组. 因为有很多题都是枚举从小到大处理查询的r. 这样的话就只需要维护[1,i]的情况
最开始用的set记录生成的gcd然后递推, 超时了.
因为区间gcd是有单调性的. (i-1->1)和i区间gcd是递减的.
而且用RMQ可以O(1)的查询[i,j]gcd的值.如果枚举[1,i-1]感觉很麻烦.所以用二分跳过中间gcd值相同的部分,即查询与i的区间gcd值为x的
最左边端点. 因为要求不同的值, 这让我想到了用线段树求[l,r]中不同数的个数(忘了是哪道题了 zz)
就i而言,首先找出最靠近i的位置使gcd的值为x. 然后和以前的位置作比较. 尽可能的维护这个位置靠右.
假设:
[3,i-1]的gcd为3,[2,i]的gcd为3. 那么在位置3上面加1.因为只要[l,i]包含这个点,那么就会有3这个值. hhh-2016-09-10 19:01:57
*/
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <stdio.h>
#include <cstring>
#include <vector>
#include <math.h>
#include <queue>
#include <set>
#include <map>
#define ll long long using namespace std; const int maxn = 100100; int a[maxn];
map<ll,int>mp; struct node
{
int l,r;
int id;
} p[maxn]; bool tocmp(node a,node b)
{
if(a.r != b.r)
return a.r < b.r;
if(a.l != b.l)
return a.l < b.l;
} ll Gcd(ll a,ll b)
{
if(b==0) return a;
else return Gcd(b,a%b);
} int lowbit(int x)
{
return x&(-x);
} ll out[maxn];
ll siz[maxn]; int n;
void add(int x,ll val)
{
if(x <= 0)
return ;
while(x <= n)
{
siz[x] += val;
x += lowbit(x);
}
} ll sum(int x)
{
if(x <=0)
return 0;
ll cnt = 0;
while(x > 0)
{
cnt += siz[x];
x -= lowbit(x);
}
return cnt;
} int dp[maxn][40];
int m[maxn]; int RMQ(int x,int y)
{
int t = m[y-x+1];
return Gcd(dp[x][t],dp[y-(1<<t)+1][t]);
} void iniRMQ(int n,int c[])
{
m[0] = -1;
for(int i = 1; i <= n; i++)
{
m[i] = ((i&(i-1)) == 0)? m[i-1]+1:m[i-1];
dp[i][0] = c[i];
}
for(int j = 1; j <= m[n]; j++)
{
for(int i = 1; i+(1<<j)-1 <= n; i++)
dp[i][j] = Gcd(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}
} void init()
{
mp.clear();
memset(siz,0,sizeof(siz));
iniRMQ(n,a);
} int main()
{
int qry;
while(scanf("%d",&n) != EOF)
{
scanf("%d",&qry); for(int i = 1; i<=n; i++)
{
scanf("%d",&a[i]);
}
init();
for(int i = 0; i < qry; i++)
{
scanf("%d",&p[i].l),scanf("%d",&p[i].r),p[i].id = i;
}
int ta = 0;
sort(p, p+qry, tocmp); for(int i = 1; i <= n; i++)
{
int thea = a[i];
int j = i;
while(j >= 1)
{
int tmid = j;
int l = 1,r = j; while(l <= r)
{
int mid = (l+r) >> 1;
if(l == r && RMQ(mid,i) == thea)
{
tmid = mid;
break;
} if(RMQ(mid,i) == thea)
r = mid-1,tmid = mid;
else
l = mid+1;
} if(!mp[thea])
add(j,1);
else if(mp[thea] < j && mp[thea])
{
add(mp[thea],-1);
add(j,1);
}
mp[thea] = j; j = tmid-1; if(j >= 1) thea = RMQ(j,i);
} while(ta < qry && p[ta].r == i)
{
out[p[ta].id] = sum(p[ta].r) - sum(p[ta].l-1);
ta++;
} } for(int i = 0; i < qry; i++)
printf("%I64d\n",out[i]);
}
return 0;
}

  

  

hdu 5869 区间不同GCD个数(树状数组)的更多相关文章

  1. 【BZOJ】1901: Zju2112 Dynamic Rankings(区间第k小+树状数组套主席树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1901 首先还是吐槽时间,我在zoj交无限tle啊!!!!!!!!我一直以为是程序错了啊啊啊啊啊啊. ...

  2. hdu 6203 ping ping ping(LCA+树状数组)

    hdu 6203 ping ping ping(LCA+树状数组) 题意:给一棵树,有m条路径,问至少删除多少个点使得这些路径都不连通 \(1 <= n <= 1e4\) \(1 < ...

  3. hdu 5877 Weak Pair dfs序+树状数组+离散化

    Weak Pair Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Prob ...

  4. FZU2224 An exciting GCD problem 区间gcd预处理+树状数组

    分析:(别人写的) 对于所有(l, r)区间,固定右区间,所有(li, r)一共最多只会有log个不同的gcd值, 可以nlogn预处理出所有不同的gcd区间,这样区间是nlogn个,然后对于询问离线 ...

  5. hdu 1754 I Hate It(树状数组区间求最值)2007省赛集训队练习赛(6)_linle专场

    题意: 输入一行数字,查询第i个数到第j个数之间的最大值.可以修改其中的某个数的值. 输入: 包含多组输入数据. 每组输入首行两个整数n,m.表示共有n个数,m次操作. 接下来一行包含n个整数. 接下 ...

  6. hdu 1116 敌兵布阵(树状数组区间求和)

    题意: 给出一行数字,然后可以修改其中第i个数字,并且可以询问第i至第j个数字的和(i <= j). 输入: 首行输入一个t,表示共有t组数据. 接下来每行首行输入一个整数n,表示共有n个数字. ...

  7. 2016 大连网赛---Different GCD Subarray Query(GCD离散+树状数组)

    题目链接 http://acm.split.hdu.edu.cn/showproblem.php?pid=5869 Problem Description This is a simple probl ...

  8. HDU 4746 莫比乌斯反演+离线查询+树状数组

    题目大意: 一个数字组成一堆素因子的乘积,如果一个数字的素因子个数(同样的素因子也要多次计数)小于等于P,那么就称这个数是P的幸运数 多次询问1<=x<=n,1<=y<=m,P ...

  9. POJ 3928 &amp; hdu 2492 &amp; Uva1428 PingPong 【树状数组】

    Ping pong                                                   Time Limit: 2000/1000 MS (Java/Others)   ...

随机推荐

  1. c语言的第三次---单程循环结构

    一.PTA实验作业 题目1 1.代码 int N,i; double height; //height代表身高 char sex; //代表男女性别 scanf("%d",& ...

  2. MySql使用存储过程实现事务的提交或者回滚

    DELIMITER $$ DROP PROCEDURE IF EXISTS test_sp1 $$ CREATE PROCEDURE test_sp1( ) BEGIN ; ; START TRANS ...

  3. codevs 3981 动态最大子段和

    3981 动态最大子段和 http://codevs.cn/problem/3981/    题目等级 : 钻石 Diamond   题目描述 Description 题目还是简单一点好... 有n个 ...

  4. Linux的rsync 配置,用于服务器之间远程传大量的数据

    [教程主题]:rsync [课程录制]: 创E [主要内容] [1] rsync介绍 Rsync(Remote Synchronize) 是一个远程资料同步工具,可通过LAN/WAN快速同步多台主机, ...

  5. PAT1048. Find Coins(01背包问题动态规划解法)

    问题描述: Eva loves to collect coins from all over the universe, including some other planets like Mars. ...

  6. Python内置函数(19)——oct

    英文文档: oct(x) Convert an integer number to an octal string. The result is a valid Python expression. ...

  7. Mego开发文档 - 复杂保存操作

    复杂保存操作 Mego框架还提供了更强大的数据更新API,以简化开发工作,同时也保证的性能. 指定属性添加数据 本列中指定插入一个数据对象,并且只会插入三列数据,最后两个属性是以表达式的形式插入. u ...

  8. Stanford依存句法关系解释

    ROOT:要处理文本的语句 IP:简单从句 NP:名词短语 VP:动词短语 PU:断句符,通常是句号.问号.感叹号等标点符号 LCP:方位词短语 PP:介词短语 CP:由'的'构成的表示修饰性关系的短 ...

  9. hdu 6205 card card card

    https://vjudge.net/contest/184514#problem/L题意:排成一行的一堆牌,每堆牌都有一定数量的牌,然后每堆牌对应有一个惩罚值.一开始所有的牌都是正面向下的,并且在游 ...

  10. Hibernate(四):Hello World

    下载hibernate开发包: 在本章之前需要继承hibernate开发插件到eclipse,详细操作请参考我的博文:<Hibernate(一):安装hibernate插件到eclipse环境& ...