Triathlon
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 6461   Accepted: 1643

Description

Triathlon is an athletic contest consisting of three consecutive sections that should be completed as fast as possible as a whole. The first section is swimming, the second section is riding bicycle and the third one is running.

The speed of each contestant in all three sections is known. The judge can choose the length of each section arbitrarily provided that no section has zero length. As a result sometimes she could choose their lengths in such a way that some particular contestant would win the competition.

Input

The first line of the input file contains integer number N (1 <= N <= 100), denoting the number of contestants. Then N lines follow, each line contains three integers Vi, Ui and Wi (1 <= Vi, Ui, Wi <= 10000), separated by spaces, denoting the speed of ith contestant in each section.

Output

For every contestant write to the output file one line, that contains word "Yes" if the judge could choose the lengths of the sections in such a way that this particular contestant would win (i.e. she is the only one who would come first), or word "No" if this is impossible.

Sample Input

9
10 2 6
10 7 3
5 6 7
3 2 7
6 2 6
3 5 7
8 4 6
10 4 2
1 8 7

Sample Output

Yes
Yes
Yes
No
No
No
Yes
No
Yes
/*
poj 1755 半平面交+不等式 一个比赛分三个部分,每个人在三个部分的速度为U,V,W。每个赛道的长度不一定。
现在给你n个人的情况,问他们是否能得奖 总时间 t1 = x/u1+y/v1+z/w1 t2 = x/u2+y/v2+z/w2
那么 两个人的时间差 t = t1 - t2 = ax+by+cz,判断正负即可
所以 可以看成 (a/z)x+(b/z)y+c 就成了二元方程
然后利用半平面相交计算出这些不等式最后能否得到一个>0公共区域。
如果能,则说明冠军与你有缘诶 hhh-2016-05-17 22:32:51
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <cmath>
#include <algorithm>
#include <functional>
#include <map>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef long long ll;
using namespace std;
const int maxn = 300;
const double PI = 3.1415926;
const double eps = 1e-16;
int n;
int sgn(double x)
{
if(fabs(x) < eps) return 0;
if(x < 0)
return -1;
else
return 1;
} struct Point
{
double x,y;
Point() {}
Point(double _x,double _y)
{
x = _x,y = _y;
}
Point operator -(const Point &b)const
{
return Point(x-b.x,y-b.y);
}
double operator ^(const Point &b)const
{
return x*b.y-y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
}; struct Line
{
Point s,t;
double k;
Line() {}
Line(Point _s,Point _t)
{
s = _s;
t = _t;
k = atan2(t.y-s.y,t.x-s.x);
}
Point operator &(const Line &b) const
{
Point res = s;
double ta = ((s-b.s)^(b.s-b.t))/((s-t)^(b.s-b.t));
res.x += (t.x-s.x)*ta;
res.y += (t.y-s.y)*ta;
return res;
}
}; //求p1,p2的直线与a,b,c这条直线的交点
Point Intersection(Point p1,Point p2,double a,double b,double c)
{
double u = fabs(a*p1.x + b*p1.y + c);
double v = fabs(a*p2.x + b*p2.y + c);
Point t;
t.x = (p1.x*v + p2.x*u)/(u+v);
t.y = (p1.y*v + p2.y*u)/(u+v);
return t;
} double CalArea(Point p[],int n)
{
double ans = 0;
for(int i = 0; i < n; i++)
{
ans += (p[i]^p[(i+1)%n])/2;
}
return fabs(ans);
} double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
} Point p[maxn];
Point tp[maxn];
void cut(double a,double b,double c,Point p[],int &cnt)
{
int tmp = 0;
for(int i = 1; i <= cnt; i++)
{
if(a*p[i].x+b*p[i].y+c < eps) tp[++tmp] = p[i];
else
{
//在p[i]处大于0,那么交点可能在(p[i-1],p[i])or(p[i+1],p[i])
if(a*p[i-1].x + b*p[i-1].y + c < -eps)
tp[++tmp] = Intersection(p[i-1],p[i],a,b,c);
if(a*p[i+1].x + b*p[i+1].y + c < -eps)
tp[++tmp] = Intersection(p[i],p[i+1],a,b,c);
}
}
for(int i = 1; i <= tmp; i++)
p[i] = tp[i];
p[0] = p[tmp];
p[tmp+1] = p[1];
cnt = tmp;
}
double inf = 1000000000000000.0;
double U[maxn],V[maxn],W[maxn];
bool cal(int now)
{
p[1] = Point(0,0);
p[2] = Point(0,inf);
p[3] = Point(inf,inf);
p[4] = Point(inf,0);
p[0] = p[4];
p[5] = p[1];
int cnt = 4;
for(int i = 0; i < n; i++)
{
if(i == now) continue;
double a = (U[i]-U[now])/(U[i]*U[now]); //1/U[now] - 1/U[i]
double b = (V[i]-V[now])/(V[i]*V[now]);
double c = (W[i]-W[now])/(W[i]*W[now]);
if(sgn(a)==0 && sgn(b) == 0 )
{
if(sgn(c) >= 0)
return false;
else
continue;
}
cut(a,b,c,p,cnt);
}
if(sgn(CalArea(p,cnt)) == 0)
return false;
else
return true;
} int main()
{
// freopen("in.txt","r",stdin);
while(scanf("%d",&n)!= EOF)
{
for(int i = 0; i < n; i++)
{
scanf("%lf%lf%lf",&U[i],&V[i],&W[i]);
}
for(int i = 0; i < n; i++)
{
if(cal(i))
printf("Yes\n");
else
printf("No\n");
}
}
return 0;
}

  

poj 1755 半平面交+不等式的更多相关文章

  1. poj 1279 半平面交核面积

    Art Gallery Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6668   Accepted: 2725 Descr ...

  2. poj 3525 半平面交求多边形内切圆最大半径【半平面交】+【二分】

    <题目链接> 题目大意:给出一个四面环海的凸多边形岛屿,求出这个岛屿中的点到海的最远距离. 解题分析: 仔细思考就会发现,其实题目其实就是让我们求该凸多边形内内切圆的最大半径是多少.但是, ...

  3. POJ 3525 /// 半平面交 模板

    题目大意: 给定n,接下来n行逆时针给定小岛的n个顶点 输出岛内离海最远的点与海的距离 半平面交模板题 将整个小岛视为由许多半平面围成 那么以相同的比例缩小这些半平面 一直到缩小到一个点时 那个点就是 ...

  4. poj 3335 /poj 3130/ poj 1474 半平面交 判断核是否存在 / poj1279 半平面交 求核的面积

    /*************** poj 3335 点序顺时针 ***************/ #include <iostream> #include <cmath> #i ...

  5. POJ 3525 半平面交+二分

    二分所能形成圆的最大距离,然后将每一条边都向内推进这个距离,最后所有边组合在一起判断时候存在内部点 #include <cstdio> #include <cstring> # ...

  6. POJ 3335 Rotating Scoreboard 半平面交求核

    LINK 题意:给出一个多边形,求是否存在核. 思路:比较裸的题,要注意的是求系数和交点时的x和y坐标不要搞混...判断核的顶点数是否大于1就行了 /** @Date : 2017-07-20 19: ...

  7. POJ 1755 Triathlon [半平面交 线性规划]

    Triathlon Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6912   Accepted: 1790 Descrip ...

  8. POJ 1755 Triathlon(线性规划の半平面交)

    Description Triathlon is an athletic contest consisting of three consecutive sections that should be ...

  9. POJ 1755 Triathlon (半平面交)

    Triathlon Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4733   Accepted: 1166 Descrip ...

随机推荐

  1. EVA 4400存储硬盘故障数据恢复方案和数据恢复过程

    EVA系列存储是一款以虚拟化存储为实现目的的HP中高端存储设备,平时数据会不断的迁移,加上任务通常较为繁重,所以磁盘的负载相对是较重的,也是很容易出现故障的.EVA是依靠大量磁盘的冗余空间,以及故障后 ...

  2. 使用静态基类方案让 ASP.NET Core 实现遵循 HATEOAS Restful Web API

    Hypermedia As The Engine Of Application State (HATEOAS) HATEOAS(Hypermedia as the engine of applicat ...

  3. php代码开启缓冲的使用方法

    php可以开启缓冲区,就是将内容放到缓冲区,再决定什么时候发送给浏览器. 感谢:http://www.jb51.net/article/38964.htm 解析PHP中ob_start()函数的用法 ...

  4. 第一章 创建WEB项目

    第一章   创建WEB项目 一.Eclipse创建WEB项目 方法/步骤1 首先,你要先打开Eclipse软件,打开后在工具栏依次点击[File]>>>[New]>>&g ...

  5. 基于 Java NIO 实现简单的 HTTP 服务器

    1.简介 本文是上一篇文章实践篇,在上一篇文章中,我分析了选择器 Selector 的原理.本篇文章,我们来说说 Selector 的应用,如标题所示,这里我基于 Java NIO 实现了一个简单的 ...

  6. Python内置函数(12)——str

    英文文档: class str(object='') class str(object=b'', encoding='utf-8', errors='strict') Return a string  ...

  7. Java Jar包压缩、解压使用指南

    什么是jar包 JAR(Java Archive)是Java的归档文件,它是一种与平台无关的文件格式,它允许将许多文件组合成一个压缩文件. 如何打/解包 使用jdk/bin/jar.exe工具,配置完 ...

  8. linux搭建django项目基本步骤

    一 linux下django基本项目搭建流程:M model 用于与数据库交互V view 接受前台请求 调用model获取结果,调用T获取页面,返回给前台T template 接受view的要求 生 ...

  9. java 中文乱码问题,请注意response.getWriter的顺序

    反例: 正例:

  10. jsp 九大内置对象和其作用详解

    JSP中一共预先定义了9个这样的对象,分别为:request.response.session.application.out.pagecontext.config.page.exception 1. ...