poj 1755 半平面交+不等式
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 6461 | Accepted: 1643 |
Description
The speed of each contestant in all three sections is known. The judge can choose the length of each section arbitrarily provided that no section has zero length. As a result sometimes she could choose their lengths in such a way that some particular contestant would win the competition.
Input
Output
Sample Input
9
10 2 6
10 7 3
5 6 7
3 2 7
6 2 6
3 5 7
8 4 6
10 4 2
1 8 7
Sample Output
Yes
Yes
Yes
No
No
No
Yes
No
Yes
/*
poj 1755 半平面交+不等式 一个比赛分三个部分,每个人在三个部分的速度为U,V,W。每个赛道的长度不一定。
现在给你n个人的情况,问他们是否能得奖 总时间 t1 = x/u1+y/v1+z/w1 t2 = x/u2+y/v2+z/w2
那么 两个人的时间差 t = t1 - t2 = ax+by+cz,判断正负即可
所以 可以看成 (a/z)x+(b/z)y+c 就成了二元方程
然后利用半平面相交计算出这些不等式最后能否得到一个>0公共区域。
如果能,则说明冠军与你有缘诶 hhh-2016-05-17 22:32:51
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <cmath>
#include <algorithm>
#include <functional>
#include <map>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef long long ll;
using namespace std;
const int maxn = 300;
const double PI = 3.1415926;
const double eps = 1e-16;
int n;
int sgn(double x)
{
if(fabs(x) < eps) return 0;
if(x < 0)
return -1;
else
return 1;
} struct Point
{
double x,y;
Point() {}
Point(double _x,double _y)
{
x = _x,y = _y;
}
Point operator -(const Point &b)const
{
return Point(x-b.x,y-b.y);
}
double operator ^(const Point &b)const
{
return x*b.y-y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
}; struct Line
{
Point s,t;
double k;
Line() {}
Line(Point _s,Point _t)
{
s = _s;
t = _t;
k = atan2(t.y-s.y,t.x-s.x);
}
Point operator &(const Line &b) const
{
Point res = s;
double ta = ((s-b.s)^(b.s-b.t))/((s-t)^(b.s-b.t));
res.x += (t.x-s.x)*ta;
res.y += (t.y-s.y)*ta;
return res;
}
}; //求p1,p2的直线与a,b,c这条直线的交点
Point Intersection(Point p1,Point p2,double a,double b,double c)
{
double u = fabs(a*p1.x + b*p1.y + c);
double v = fabs(a*p2.x + b*p2.y + c);
Point t;
t.x = (p1.x*v + p2.x*u)/(u+v);
t.y = (p1.y*v + p2.y*u)/(u+v);
return t;
} double CalArea(Point p[],int n)
{
double ans = 0;
for(int i = 0; i < n; i++)
{
ans += (p[i]^p[(i+1)%n])/2;
}
return fabs(ans);
} double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
} Point p[maxn];
Point tp[maxn];
void cut(double a,double b,double c,Point p[],int &cnt)
{
int tmp = 0;
for(int i = 1; i <= cnt; i++)
{
if(a*p[i].x+b*p[i].y+c < eps) tp[++tmp] = p[i];
else
{
//在p[i]处大于0,那么交点可能在(p[i-1],p[i])or(p[i+1],p[i])
if(a*p[i-1].x + b*p[i-1].y + c < -eps)
tp[++tmp] = Intersection(p[i-1],p[i],a,b,c);
if(a*p[i+1].x + b*p[i+1].y + c < -eps)
tp[++tmp] = Intersection(p[i],p[i+1],a,b,c);
}
}
for(int i = 1; i <= tmp; i++)
p[i] = tp[i];
p[0] = p[tmp];
p[tmp+1] = p[1];
cnt = tmp;
}
double inf = 1000000000000000.0;
double U[maxn],V[maxn],W[maxn];
bool cal(int now)
{
p[1] = Point(0,0);
p[2] = Point(0,inf);
p[3] = Point(inf,inf);
p[4] = Point(inf,0);
p[0] = p[4];
p[5] = p[1];
int cnt = 4;
for(int i = 0; i < n; i++)
{
if(i == now) continue;
double a = (U[i]-U[now])/(U[i]*U[now]); //1/U[now] - 1/U[i]
double b = (V[i]-V[now])/(V[i]*V[now]);
double c = (W[i]-W[now])/(W[i]*W[now]);
if(sgn(a)==0 && sgn(b) == 0 )
{
if(sgn(c) >= 0)
return false;
else
continue;
}
cut(a,b,c,p,cnt);
}
if(sgn(CalArea(p,cnt)) == 0)
return false;
else
return true;
} int main()
{
// freopen("in.txt","r",stdin);
while(scanf("%d",&n)!= EOF)
{
for(int i = 0; i < n; i++)
{
scanf("%lf%lf%lf",&U[i],&V[i],&W[i]);
}
for(int i = 0; i < n; i++)
{
if(cal(i))
printf("Yes\n");
else
printf("No\n");
}
}
return 0;
}
poj 1755 半平面交+不等式的更多相关文章
- poj 1279 半平面交核面积
Art Gallery Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6668 Accepted: 2725 Descr ...
- poj 3525 半平面交求多边形内切圆最大半径【半平面交】+【二分】
<题目链接> 题目大意:给出一个四面环海的凸多边形岛屿,求出这个岛屿中的点到海的最远距离. 解题分析: 仔细思考就会发现,其实题目其实就是让我们求该凸多边形内内切圆的最大半径是多少.但是, ...
- POJ 3525 /// 半平面交 模板
题目大意: 给定n,接下来n行逆时针给定小岛的n个顶点 输出岛内离海最远的点与海的距离 半平面交模板题 将整个小岛视为由许多半平面围成 那么以相同的比例缩小这些半平面 一直到缩小到一个点时 那个点就是 ...
- poj 3335 /poj 3130/ poj 1474 半平面交 判断核是否存在 / poj1279 半平面交 求核的面积
/*************** poj 3335 点序顺时针 ***************/ #include <iostream> #include <cmath> #i ...
- POJ 3525 半平面交+二分
二分所能形成圆的最大距离,然后将每一条边都向内推进这个距离,最后所有边组合在一起判断时候存在内部点 #include <cstdio> #include <cstring> # ...
- POJ 3335 Rotating Scoreboard 半平面交求核
LINK 题意:给出一个多边形,求是否存在核. 思路:比较裸的题,要注意的是求系数和交点时的x和y坐标不要搞混...判断核的顶点数是否大于1就行了 /** @Date : 2017-07-20 19: ...
- POJ 1755 Triathlon [半平面交 线性规划]
Triathlon Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6912 Accepted: 1790 Descrip ...
- POJ 1755 Triathlon(线性规划の半平面交)
Description Triathlon is an athletic contest consisting of three consecutive sections that should be ...
- POJ 1755 Triathlon (半平面交)
Triathlon Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4733 Accepted: 1166 Descrip ...
随机推荐
- 2018上c语言第0次作业
随笔: 1.翻阅邹欣老师博客关于师生关系博客,并回答下列问题,每个问题的答案不少于500字: (1)最理想的师生关系是健身教练和学员的关系,在这种师生关系中你期望获得来自老师的哪些帮助? 答:对此问题 ...
- 团队作业4——第一次项目冲刺(Alpha版本)2017.11.19
第三次会议:2017-11-16 第二次会议讨论的还没有完全实现,于是在第三次会议上对此进行了一些对我们工作上的看法,得出结论:多花时间啊!!!! 又没照照片图: 会议主要内容: 1.登录注册完善 2 ...
- css3 文字的设置
1.text-shadow 有3个length参数,第1个表示水平偏移,第2个表示垂直偏移,第3个表示模糊(可选) .text11{text-shadow: 3px 3px 5px #f00 ;col ...
- Flask 测试
测试是每个应用系统发布前必须经历的步骤,自动化测试对测试效率的提高也是毋庸置疑的.对于Flask应用来说,当然可以使用Web自动化测试工具,比如Selenium等来测.Flask官方推荐的自动化测试方 ...
- nyoj 对决
对决 时间限制:1000 ms | 内存限制:65535 KB 难度:0 描述 Topcoder 招进来了 n 个新同学,Yougth计划把这个n个同学分成两组,要求每组中每个人必须跟另一组中 ...
- python 之 列表list && 元组tuple
目录: 列表 列表基本操作 列表的操作符 列表的函数和方法 元组 介绍: 列表是一种可变的有序集合,可以进行访问.添加和删除操作. 元组是一种不可变的有序集合,可以访问. 1.列表的基本操作 创建列表 ...
- Python-进程与线程理论基础-Day10
进程与线程理论基础 1.背景知识 理论基础: 一 操作系统的作用: 1:隐藏丑陋复杂的硬件接口,提供良好的抽象接口 2:管理.调度进程,并且将多个进程对硬件的竞争变得有序 二 多道技术: 1.产生背景 ...
- angular2 学习笔记 ( unit test 单元测试 )
第一次写单元测试. 以前一直都有听说 TDD 的事情. 今天总算是去尝试了一下. 先说说 TDD 的想法, 是这样的, 开发项目的流程 : 确定需求 -> 写类,接口,方法的名字(不写具体实现代 ...
- python入门(5)使用文件编辑器编写代码并保存执行
python入门(5)使用文件编辑器编写代码并保存执行 两款文本编辑器: 一个是Sublime Text,免费使用,但是不付费会弹出提示框: 一个是Notepad++,免费使用,有中文界面: 请注意, ...
- C# 文件操作类大全
C# 文件操作类大全 时间:2015-01-31 16:04:20 阅读:1724 评论:0 收藏:0 [点我收藏+] 标签: 1.创建文件夹 //usin ...