【BZOJ3143】游走(高斯消元,数学期望)

题面

BZOJ

题解

首先,概率不会直接算。。。

所以来一个逼近法算概率

这样就可以求出每一条边的概率

随着走的步数的增多,答案越接近

(我卡到\(5000\)步可以拿\(50\)分)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 520
#define MAXL 500000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next;}e[MAXL];
int h[MAX],cnt=2;
int n,m,op[MAX];
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;op[u]++;}
double V[MAX*MAX];
double f[2][MAX];
int main()
{
n=read();m=read();
for(int i=1;i<=m;++i)
{
int u=read(),v=read();
Add(u,v);Add(v,u);
}
f[0][1]=1;
for(int st=1,nw=1,nt=0;st<=5000;++st,nw^=1,nt^=1)
{
for(int i=1;i<=n;++i)f[nw][i]=0;
for(int u=1;u<n;++u)
for(int i=h[u];i;i=e[i].next)
V[i>>1]+=f[nt][u]/op[u],f[nw][e[i].v]+=f[nt][u]/op[u];
}
sort(&V[1],&V[m+1]);
double ans=0;
for(int i=m;i;--i)
ans+=i*V[m-i+1];
printf("%.3lf\n",ans);
return 0; }

这样子算出来会有精度问题

所以就挂了

现在考虑怎么算这个概率

显然不能\(dp\)

那么,看看每一个点的概率是怎么来的

\[f[i]=\sum_{edge(u,i)}\frac{f[u]}{op[u]}
\]

其中,\(op[u]\)是\(u\)的出度

那么,现在我有\(n\)个未知数(每个的概率)

以及\(n\)个方程(每个点的概率就是怎么算出来的)

大力用高斯消元解一下就好了

算出来之后贪心

就没有问题啦

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 520
#define MAXL 500000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next;}e[MAXL];
int h[MAX],cnt=2;
int n,m,op[MAX];
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;op[u]++;}
double V[MAX*MAX];
double g[MAX][MAX];
double f[MAX];
void Build()
{
for(int i=1;i<=n;++i)g[i][i]=1;
for(int u=1;u<n;++u)
for(int i=h[u];i;i=e[i].next)
g[e[i].v][u]-=1.0/op[u];
g[1][n+1]=1;
}
void Guess()
{
for(int i=1;i<=n;++i)
{
double bs=g[i][i];
for(int j=1;j<=n+1;++j)g[i][j]/=bs;
for(int j=i+1;j<=n;++j)
{
bs=g[j][i];
for(int k=1;k<=n+1;++k)
g[j][k]-=g[i][k]*bs;
}
}
for(int i=n;i;--i)
{
f[i]=g[i][n+1];
for(int j=i-1;j;--j)
g[j][n+1]-=f[i]*g[j][i];
}
}
int main()
{
n=read();m=read();
for(int i=1;i<=m;++i)
{
int u=read(),v=read();
Add(u,v);Add(v,u);
}
Build();Guess();
for(int u=1;u<n;++u)
for(int i=h[u];i;i=e[i].next)
V[i>>1]+=f[u]/op[u];
double ans=0;
sort(&V[1],&V[m+1]);
for(int i=m;i;--i)
ans+=i*V[m-i+1];
printf("%.3lf\n",ans);
return 0; }

【BZOJ3143】游走(高斯消元,数学期望)的更多相关文章

  1. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  2. [HNOI2013][BZOJ3143] 游走 - 高斯消元

    题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边 ...

  3. Luogu3232 HNOI2013 游走 高斯消元、期望、贪心

    传送门 这种无向图上从一个点乱走到另一个点的期望题目好几道与高斯消元有关 首先一个显然的贪心:期望经过次数越多,分配到的权值就要越小. 设$du_i$表示$i$的度,$f_i$表示点$i$的期望经过次 ...

  4. BZOJ 3143 HNOI2013 游走 高斯消元 期望

    这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...

  5. 【BZOJ3143】【HNOI2013】游走 高斯消元

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3143 我们令$P_i$表示从第i号点出发的期望次数.则$P_n$显然为$0$. 对于$P ...

  6. bzoj 3143: [Hnoi2013]游走 高斯消元

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1026  Solved: 448[Submit][Status] ...

  7. 【xsy1201】 随机游走 高斯消元

    题目大意:你有一个$n*m$的网格(有边界),你从$(1,1)$开始随机游走,求走到$(n,m)$的期望步数. 数据范围:$n≤10$,$m≤1000$. 我们令 $f[i][j]$表示从$(1,1) ...

  8. BZOJ3143:[HNOI2013]游走(高斯消元)

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...

  9. 高斯消元与期望DP

    高斯消元可以解决一系列DP序混乱的无向图上(期望)DP DP序 DP序是一道DP的所有状态的一个排列,使状态x所需的所有前置状态都位于状态x前: (通俗的说,在一个状态转移方程中‘=’左侧的状态应该在 ...

  10. HDU4870_Rating_双号从零单排_高斯消元求期望

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4870 原题: Rating Time Limit: 10000/5000 MS (Java/Other ...

随机推荐

  1. python学习:函数的递归调用

    计算阶层   普通方法: -使用循环   #!/usr/bin/python   def factorial(n):     sum = 1     for i in range(1,n+1):   ...

  2. 【技术干货】git常用命令

    2.1 git init语法: git init在当前目录初始化git仓库,适用于尚未使用git管理的项目2.2 git clone语法: git clone <url>例如: git c ...

  3. ireport报表学习

    常用组件介绍: 制作一个报表一般四个组件比较常用,下面分别介绍 Rectangle:用于画表格的样式,整个表格的样式使用次组件做出来的,本控件表现为一个黑色矩形框,多个黑色矩形框排在一起可以组合出来任 ...

  4. tomcat使用cookies缓存的时候中文报错解决办法 java.lang.IllegalArgumentException: Control character in cookie value or attribute.

    报错出现 java.lang.IllegalArgumentException: Control character in cookie value or attribute. at org.apac ...

  5. php中datetime时间和int时间互相转换

    int时间转换datetime时间 echo date("Y-m-d H:i:s", 1210003200);  datetime时间转换int时间 echo  strtotime ...

  6. [Cake] 1. CI中的Cake

    在上一篇C#Make自动化构建-简介中,简单的介绍了下Cake的脚本如何编写以及通过Powershell在本地运行Cake脚本.本篇在此基础上,介绍下如何在CI环境中使用Cake. 1. Cake简介 ...

  7. 项目实战14—ELK 企业内部搜索引擎

    一.els.elk 的介绍 1.els,elk els:ElasticSearch,Logstash,Kibana,Beats elk:ElasticSearch,Logstash,Kibana ① ...

  8. Spark第一个应用程序

    首先要对源码进行编译,生成对应hadoop版本的spark开发程序jar包,上篇已经写了具体的过程,这里不再赘述. 在安装spark的机器上,下载eclipse-java-x86_64版本,将spar ...

  9. linux mysql重启命令

    1.通过rpm包安装的MySQL 1 2 service mysqld restart /etc/inint.d/mysqld start 2.从源码包安装的MySQL 1 2 3 4 // Linu ...

  10. 百度地图API-javascript-web地图的应用

    html部分的代码 <div class="maxwidth"> <div class="address clearfix"> < ...