【BZOJ3143】游走(高斯消元,数学期望)
【BZOJ3143】游走(高斯消元,数学期望)
题面
题解
首先,概率不会直接算。。。
所以来一个逼近法算概率
这样就可以求出每一条边的概率
随着走的步数的增多,答案越接近
(我卡到\(5000\)步可以拿\(50\)分)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 520
#define MAXL 500000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next;}e[MAXL];
int h[MAX],cnt=2;
int n,m,op[MAX];
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;op[u]++;}
double V[MAX*MAX];
double f[2][MAX];
int main()
{
n=read();m=read();
for(int i=1;i<=m;++i)
{
int u=read(),v=read();
Add(u,v);Add(v,u);
}
f[0][1]=1;
for(int st=1,nw=1,nt=0;st<=5000;++st,nw^=1,nt^=1)
{
for(int i=1;i<=n;++i)f[nw][i]=0;
for(int u=1;u<n;++u)
for(int i=h[u];i;i=e[i].next)
V[i>>1]+=f[nt][u]/op[u],f[nw][e[i].v]+=f[nt][u]/op[u];
}
sort(&V[1],&V[m+1]);
double ans=0;
for(int i=m;i;--i)
ans+=i*V[m-i+1];
printf("%.3lf\n",ans);
return 0;
}
这样子算出来会有精度问题
所以就挂了
现在考虑怎么算这个概率
显然不能\(dp\)
那么,看看每一个点的概率是怎么来的
\]
其中,\(op[u]\)是\(u\)的出度
那么,现在我有\(n\)个未知数(每个的概率)
以及\(n\)个方程(每个点的概率就是怎么算出来的)
大力用高斯消元解一下就好了
算出来之后贪心
就没有问题啦
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 520
#define MAXL 500000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next;}e[MAXL];
int h[MAX],cnt=2;
int n,m,op[MAX];
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;op[u]++;}
double V[MAX*MAX];
double g[MAX][MAX];
double f[MAX];
void Build()
{
for(int i=1;i<=n;++i)g[i][i]=1;
for(int u=1;u<n;++u)
for(int i=h[u];i;i=e[i].next)
g[e[i].v][u]-=1.0/op[u];
g[1][n+1]=1;
}
void Guess()
{
for(int i=1;i<=n;++i)
{
double bs=g[i][i];
for(int j=1;j<=n+1;++j)g[i][j]/=bs;
for(int j=i+1;j<=n;++j)
{
bs=g[j][i];
for(int k=1;k<=n+1;++k)
g[j][k]-=g[i][k]*bs;
}
}
for(int i=n;i;--i)
{
f[i]=g[i][n+1];
for(int j=i-1;j;--j)
g[j][n+1]-=f[i]*g[j][i];
}
}
int main()
{
n=read();m=read();
for(int i=1;i<=m;++i)
{
int u=read(),v=read();
Add(u,v);Add(v,u);
}
Build();Guess();
for(int u=1;u<n;++u)
for(int i=h[u];i;i=e[i].next)
V[i>>1]+=f[u]/op[u];
double ans=0;
sort(&V[1],&V[m+1]);
for(int i=m;i;--i)
ans+=i*V[m-i+1];
printf("%.3lf\n",ans);
return 0;
}
【BZOJ3143】游走(高斯消元,数学期望)的更多相关文章
- 【BZOJ-3143】游走 高斯消元 + 概率期望
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2264 Solved: 987[Submit][Status] ...
- [HNOI2013][BZOJ3143] 游走 - 高斯消元
题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边 ...
- Luogu3232 HNOI2013 游走 高斯消元、期望、贪心
传送门 这种无向图上从一个点乱走到另一个点的期望题目好几道与高斯消元有关 首先一个显然的贪心:期望经过次数越多,分配到的权值就要越小. 设$du_i$表示$i$的度,$f_i$表示点$i$的期望经过次 ...
- BZOJ 3143 HNOI2013 游走 高斯消元 期望
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...
- 【BZOJ3143】【HNOI2013】游走 高斯消元
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3143 我们令$P_i$表示从第i号点出发的期望次数.则$P_n$显然为$0$. 对于$P ...
- bzoj 3143: [Hnoi2013]游走 高斯消元
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1026 Solved: 448[Submit][Status] ...
- 【xsy1201】 随机游走 高斯消元
题目大意:你有一个$n*m$的网格(有边界),你从$(1,1)$开始随机游走,求走到$(n,m)$的期望步数. 数据范围:$n≤10$,$m≤1000$. 我们令 $f[i][j]$表示从$(1,1) ...
- BZOJ3143:[HNOI2013]游走(高斯消元)
Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...
- 高斯消元与期望DP
高斯消元可以解决一系列DP序混乱的无向图上(期望)DP DP序 DP序是一道DP的所有状态的一个排列,使状态x所需的所有前置状态都位于状态x前: (通俗的说,在一个状态转移方程中‘=’左侧的状态应该在 ...
- HDU4870_Rating_双号从零单排_高斯消元求期望
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4870 原题: Rating Time Limit: 10000/5000 MS (Java/Other ...
随机推荐
- Python md5解密
这篇文章原来在我盘里存了好久了~ 16年9月的. 这 Python的长进没多少啊.现在都17.4了 哎~~ Python之POST提交解密MD5 用易语言写出来md5解密软件后感觉一点成就感 ...
- UEditor工具栏上自定义按钮、图标、事件和右击菜单添加自定义按钮
首先我要说是,举例说的这个版本是1.2以上的,因为一些配置代码转移到了zh-cn.js里,其他没有变化.开门见山直接写:(我自定义的是在线美图功能) 第一步:找到ueditor.config.js文件 ...
- 什么是 lnmp 实现原理。
LNMP代表的就是:Linux系统下Nginx+MySQL+PHP这种网站服务器架构. Linux是一类Unix计算机操作系统的统称,是目前最流行的免费操作系统.代表版本有:debian.centos ...
- [Python Study Notes]磁盘信息和IO性能
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ...
- CSS常用属性计算原理
absolute: left.right/top.bottom 的百分比值分别根据父元素的 wdith / height 计算 margin: top /right / bottom/ left 的百 ...
- CentOS源码安装Python3.6
一.安装环境及版本 CentOS 6.5 Python 3.6.1 二.安装依赖包 1.安装静态库 # yum install -y openssl-static 注:如果不安装该静态库,会导致pyt ...
- Python基础——数据类型与基本运算【主要为除法】
Python版本:3.6.2 操作系统:Windows 作者:SmallWZQ 无论是Python 3.x版本还是2.x版本,Python均支持多种数据类型,能够直接处理的数据类型包括Int类型. ...
- TensorFlow实战之实现AlexNet经典卷积神经网络
本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.AlexNet模型及其基本原理阐述 1.关于AlexNet ...
- 2017年StackOverflow上最好的20个Python问题
1.Python的 .. (点号 点号) 是什么语法? 答案地址:https://stackoverflow.com/questions/43487811/what-is-python-dot-dot ...
- C语言_简单的阶乘函数
include <stdio.h> long jc (int num); long jc2 (int num); int main() { long n; n = jc(); printf ...