[LeetCode] Coin Change 2 硬币找零之二
You are given coins of different denominations and a total amount of money. Write a function to compute the number of combinations that make up that amount. You may assume that you have infinite number of each kind of coin.
Note: You can assume that
- 0 <= amount <= 5000
- 1 <= coin <= 5000
- the number of coins is less than 500
- the answer is guaranteed to fit into signed 32-bit integer
Example 1:
Input: amount = 5, coins = [1, 2, 5]
Output: 4
Explanation: there are four ways to make up the amount:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
Example 2:
Input: amount = 3, coins = [2]
Output: 0
Explanation: the amount of 3 cannot be made up just with coins of 2.
Example 3:
Input: amount = 10, coins = [10]
Output: 1
这道题是之前那道 Coin Change 的拓展,那道题问我们最少能用多少个硬币组成给定的钱数,而这道题问的是组成给定钱数总共有多少种不同的方法。还是要使用 DP 来做,首先来考虑最简单的情况,如果只有一个硬币的话,那么给定钱数的组成方式就最多有1种,就看此钱数能否整除该硬币值。当有两个硬币的话,组成某个钱数的方式就可能有多种,比如可能由每种硬币单独来组成,或者是两种硬币同时来组成,怎么量化呢?比如我们有两个硬币 [1,2],钱数为5,那么钱数的5的组成方法是可以看作两部分组成,一种是由硬币1单独组成,那么仅有一种情况 (1+1+1+1+1);另一种是由1和2共同组成,说明组成方法中至少需要有一个2,所以此时先取出一个硬币2,然后只要拼出钱数为3即可,这个3还是可以用硬币1和2来拼,所以就相当于求由硬币 [1,2] 组成的钱数为3的总方法。是不是不太好理解,多想想。这里需要一个二维的 dp 数组,其中 dp[i][j] 表示用前i个硬币组成钱数为j的不同组合方法,怎么算才不会重复,也不会漏掉呢?我们采用的方法是一个硬币一个硬币的增加,每增加一个硬币,都从1遍历到 amount,对于遍历到的当前钱数j,组成方法就是不加上当前硬币的拼法 dp[i-1][j],还要加上,去掉当前硬币值的钱数的组成方法,当然钱数j要大于当前硬币值,状态转移方程也在上面的分析中得到了:
dp[i][j] = dp[i - 1][j] + (j >= coins[i - 1] ? dp[i][j - coins[i - 1]] : 0)
注意要初始化每行的第一个位置为0,参见代码如下:
解法一:
class Solution {
public:
int change(int amount, vector<int>& coins) {
vector<vector<int>> dp(coins.size() + , vector<int>(amount + , ));
dp[][] = ;
for (int i = ; i <= coins.size(); ++i) {
dp[i][] = ;
for (int j = ; j <= amount; ++j) {
dp[i][j] = dp[i - ][j] + (j >= coins[i - ] ? dp[i][j - coins[i - ]] : );
}
}
return dp[coins.size()][amount];
}
};
我们可以对空间进行优化,由于 dp[i][j] 仅仅依赖于 dp[i - 1][j] 和 dp[i][j - coins[i - 1]] 这两项,就可以使用一个一维dp数组来代替,此时的 dp[i] 表示组成钱数i的不同方法。其实最开始的时候,博主就想着用一维的 dp 数组来写,但是博主开始想的方法是把里面两个 for 循环调换了一个位置,结果计算的种类数要大于正确答案,所以一定要注意 for 循环的顺序不能搞反,参见代码如下:
解法二:
class Solution {
public:
int change(int amount, vector<int>& coins) {
vector<int> dp(amount + , );
dp[] = ;
for (int coin : coins) {
for (int i = coin; i <= amount; ++i) {
dp[i] += dp[i - coin];
}
}
return dp[amount];
}
};
在 CareerCup 中,有一道极其相似的题 9.8 Represent N Cents 美分的组成,书里面用的是那种递归的方法,博主想将其解法直接搬到这道题里,但是失败了,博主发现使用那种的递归的解法必须要有值为1的硬币存在,这点无法在这道题里满足。你以为这样博主就没有办法了吗?当然有,博主加了判断,当用到最后一个硬币时,判断当前还剩的钱数是否能整除这个硬币,不能的话就返回0,否则返回1。还有就是用二维数组的 memo 会 TLE,所以博主换成了 map,就可以通过啦~
解法三:
class Solution {
public:
int change(int amount, vector<int>& coins) {
if (amount == ) return ;
if (coins.empty()) return ;
map<pair<int, int>, int> memo;
return helper(amount, coins, , memo);
}
int helper(int amount, vector<int>& coins, int idx, map<pair<int, int>, int>& memo) {
if (amount == ) return ;
else if (idx >= coins.size()) return ;
else if (idx == coins.size() - ) return amount % coins[idx] == ;
if (memo.count({amount, idx})) return memo[{amount, idx}];
int val = coins[idx], res = ;
for (int i = ; i * val <= amount; ++i) {
int rem = amount - i * val;
res += helper(rem, coins, idx + , memo);
}
return memo[{amount, idx}] = res;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/518
类似题目:
参考资料:
https://leetcode.com/problems/coin-change-2/
https://leetcode.com/problems/coin-change-2/discuss/141076/Logical-Thinking-with-Clear-Java-Code
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Coin Change 2 硬币找零之二的更多相关文章
- [LeetCode] 518. Coin Change 2 硬币找零之二
You are given coins of different denominations and a total amount of money. Write a function to comp ...
- [LeetCode] 518. Coin Change 2 硬币找零 2
You are given coins of different denominations and a total amount of money. Write a function to comp ...
- [LeetCode] Lemonade Change 买柠檬找零
At a lemonade stand, each lemonade costs $5. Customers are standing in a queue to buy from you, and ...
- dp算法之硬币找零问题
题目:硬币找零 题目介绍:现在有面值1.3.5元三种硬币无限个,问组成n元的硬币的最小数目? 分析:现在假设n=10,画出状态分布图: 硬币编号 硬币面值p 1 1 2 3 3 5 编号i/n总数j ...
- codevs 3961 硬币找零【完全背包DP/记忆化搜索】
题目描述 Description 在现实生活中,我们经常遇到硬币找零的问题,例如,在发工资时,财务人员就需要计算最少的找零硬币数,以便他们能从银行拿回最少的硬币数,并保证能用这些硬币发工资. 我们应该 ...
- NYOJ 995 硬币找零
硬币找零 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 在现实生活中,我们经常遇到硬币找零的问题,例如,在发工资时,财务人员就需要计算最少的找零硬币数,以便他们能从 ...
- [LeetCode] Coin Change 硬币找零
You are given coins of different denominations and a total amount of money amount. Write a function ...
- [LeetCode] 322. Coin Change 硬币找零
You are given coins of different denominations and a total amount of money amount. Write a function ...
- NYOJ995硬币找零(简单dp)
/* 题意:给你不同面额的硬币(每种硬币无限多),需要找零的面值是T,用这些硬币进行找零, 如果T恰好能被找零,输出最少需要的硬币的数目!否则请输出剩下钱数最少的找零方案中的最少硬币数! 思路:转换成 ...
随机推荐
- runtime.getruntime.availableprocessors
1:获取cpu核心数: Runtime.getRuntime().availableProcessors(); 创建线程池: Executors.newFixedThreadPool(nThreads ...
- JAVA-基础语法篇
JAVA-基础语法篇 一. 基础语法: 对大小写敏感 类名的首字母大写 方法名首字母小写,后面用驼峰发命名 源文件名和类名要相同 主方法入口: public static void main( ...
- 2017-2018-1 Java演绎法 小组会议及交互汇总
第一周会议 今天我们小组开展了第一次团队例会活动.我们小组将<构建之法>分为了六个部分并由六位成员先分别学习并向组长上传学习收获,这次的活动内容便是 交流前两周小组成员学习阅读<构建 ...
- C语言-最后一次作业
1.当初你是如何做出选择计算机专业的决定的? 经过一个学期,你的看法改变了么,为什么? 你觉得计算机是你喜欢的领域吗,它是你擅长的领域吗? 为什么? 我当初选择计算机专业是因为我是真的很向往计算机这方 ...
- 学号:201621123032 《Java程序设计》第10周学习总结
1:本周学习总结 1.1.:以你喜欢的方式(思维导图或其他)归纳总结异常相关内容. 2:书面作业 2.1.:常用异常--结合题集题目7-1回答 2.1.1:自己以前编写的代码中经常出现什么异常.需要捕 ...
- 第十一条:谨慎的覆盖clone()方法
一个类要想实现克隆,需要实现Cloneable接口,表明这个类的对象具有克隆的功能. Cloneable接口是一个mixin接口,它里面并没有任何的抽象方法,类似的接口有Serializable接口, ...
- JAVAGUI设计步骤
①创建容器 首先要创建一个GUI应用程序,需要创建一个用于容纳所有其它GUI组件元素的载体,Java中称为容器.典型的包括窗口(Window).框架(Frame/JFrame).对话框(Dialog/ ...
- bzoj千题计划288:bzoj1876: [SDOI2009]SuperGCD
http://www.lydsy.com/JudgeOnline/problem.php?id=1876 高精压位GCD 对于 GCD(a, b) a>b 若 a 为奇数,b 为偶数,GCD ...
- R语言基础2
----------------------------------R语言学习与科研应用,科研作图,数据统计挖掘分析,群:719954246-------------------------- 通常, ...
- Ubuntu命令行连接WPA/WPA2无线网线
一,连接无加密无线网络zhang:sudo ip link set wlan0 up sudo iw dev wlan0 connect zhangsudo dhclient wlan0 二,连接WP ...