Description

For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race using the T (2 ≤ T ≤ 100) cow trails throughout the pasture.

Each trail connects two different intersections (1 ≤ I1i ≤ 1,000; 1 ≤ I2i ≤ 1,000), each of which is the termination for at least two trails. The cows know the lengthi of each trail (1 ≤ lengthi  ≤ 1,000), the two intersections the trail connects, and they know that no two intersections are directly connected by two different trails. The trails form a structure known mathematically as a graph.

To run the relay, the N cows position themselves at various intersections (some intersections might have more than one cow). They must position themselves properly so that they can hand off the baton cow-by-cow and end up at the proper finishing place.

Write a program to help position the cows. Find the shortest path that connects the starting intersection (S) and the ending intersection (E) and traverses exactly N cow trails.

给出一张无向连通图,求S到E经过k条边的最短路。

Input

  • Line 1: Four space-separated integers: N, T, S, and E

  • Lines 2..T+1: Line i+1 describes trail i with three space-separated integers: lengthi , I1i , and I2i

Output

  • Line 1: A single integer that is the shortest distance from intersection S to intersection E that traverses exactly N cow trails.

Sample Input

2 6 6 4
11 4 6
4 4 8
8 4 9
6 6 8
2 6 9
3 8 9

Sample Output

10

题解

解法一:

考虑有用的点数很少,我们可以哈希一下,建立邻接矩阵,矩阵加速求出经过$N$条边的从$S$到$T$的最短路。

 #include<set>
#include<map>
#include<stack>
#include<ctime>
#include<cmath>
#include<queue>
#include<string>
#include<cstdio>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
#define RE register
#define IL inline
using namespace std;
const int INF=1e9; IL int Min(int a,int b){return a<b ? a:b;} int num[],pos;
int f[][];
int k,m,s,e,u,v,l;
struct mat
{
int a[][];
mat() {for (int i=;i<=pos;i++)for (int j=;j<=pos;j++) a[i][j]=INF;}
mat operator * (const mat &b)
{
mat ans;
for (RE int i=;i<=pos;i++)
for (RE int j=;j<=pos;j++)
for (RE int k=;k<=pos;k++)
ans.a[i][j]=Min(ans.a[i][j],a[i][k]+b.a[k][j]);
return ans;
}
}; int main()
{
scanf("%d%d%d%d",&k,&m,&s,&e);
for (RE int i=;i<=m;i++)
{
scanf("%d%d%d",&l,&u,&v);
if (!num[u]) num[u]=++pos;
if (!num[v]) num[v]=++pos;
f[num[u]][num[v]]=f[num[v]][num[u]]=l;
}
mat S,T;
for (RE int i=;i<=pos;i++) for (RE int j=;j<=pos;j++) if (f[i][j]) S.a[i][j]=T.a[i][j]=f[i][j];
k--;
while (k)
{
if (k&) S=S*T;
k>>=;
T=T*T;
}
printf("%d\n",S.a[num[s]][num[e]]);
return ;
}

矩乘

解法二:

利用倍增的思想。令$f[i][j][t]$表示从$i$到$j$经过$2^t$条边的最优值,做一遍$floyd$再统计答案即可。

 #include<cmath>
#include<queue>
#include<ctime>
#include<stack>
#include<cstdio>
#include<string>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int INF=1e9; int num[],pos;
int f[][][];
int towards[][];
bool t;
int k,m,s,e,u,v,l; int main()
{
memset(f,/,sizeof(f));
memset(towards,/,sizeof(towards));
scanf("%d%d%d%d",&k,&m,&s,&e);
for (int i=;i<=m;i++)
{
scanf("%d%d%d",&l,&u,&v);
if (!num[u]) num[u]=++pos;
if (!num[v]) num[v]=++pos;
f[num[u]][num[v]][]=f[num[v]][num[u]][]=l;
}
int lim=log2(k);
for (int p=;p<=lim;p++)
for (int q=;q<=pos;q++)
for (int i=;i<=pos;i++)
for (int j=;j<=pos;j++)// if (i!=j&&q!=i)
if (f[i][j][p]>f[i][q][p-]+f[q][j][p-])
f[i][j][p]=f[i][q][p-]+f[q][j][p-];
int p=;
towards[num[s]][t]=;
while (k!=)
{
if (k&)
{
t=!t;
for (int i=;i<=pos;i++)
{
towards[i][t]=INF;
for (int j=;j<=pos;j++)
if (towards[i][t]>towards[j][!t]+f[i][j][p])
towards[i][t]=towards[j][!t]+f[i][j][p];
}
}
p++;
k=k>>;
}
printf("%d\n",towards[num[e]][t]);
return ;
}

倍增

[USACO 07NOV]Cow Relays的更多相关文章

  1. Cow Relays 【优先队列优化的BFS】USACO 2001 Open

    Cow Relays Time Limit: 1000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others) Tota ...

  2. POJ3613 Cow Relays [矩阵乘法 floyd类似]

    Cow Relays Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7335   Accepted: 2878 Descri ...

  3. poj3613 Cow Relays【好题】【最短路】【快速幂】

    Cow Relays Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:9207   Accepted: 3604 Descrip ...

  4. poj 3613 Cow Relays

    Cow Relays Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5411   Accepted: 2153 Descri ...

  5. 3298: [USACO 2011Open]cow checkers

    3298: [USACO 2011Open]cow checkers Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 65  Solved: 26[Su ...

  6. BZOJ3298: [USACO 2011Open]cow checkers(佐威夫博弈)

    3298: [USACO 2011Open]cow checkers Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 195  Solved: 96[S ...

  7. bzoj 3298: [USACO 2011Open]cow checkers -- 数学

    3298: [USACO 2011Open]cow checkers Time Limit: 10 Sec  Memory Limit: 128 MB Description 一天,Besssie准备 ...

  8. poj3613:Cow Relays(倍增优化+矩阵乘法floyd+快速幂)

    Cow Relays Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7825   Accepted: 3068 Descri ...

  9. 「POJ3613」Cow Relays

    「POJ3613」Cow Relays 传送门 就一个思想:\(N\) 遍 \(\text{Floyd}\) 求出经过 \(N\) 个点的最短路 看一眼数据范围,想到离散化+矩阵快速幂 代码: #in ...

随机推荐

  1. 【MySql系列】MySql踩坑系列

    问题一:远程登录报错Host '192.168.181.201' is not allowed to connect to this MySQL server 解决: 问题二:MySql access ...

  2. Alpha阶段小结

    1 团队的源码仓库地址 https://github.com/WHUSE2017/MyGod 2 Alpha过程回顾 2.1 团队项目预期 有一个可视化的安卓APP,实现二手交易基本功能.预期的典型用 ...

  3. 敏捷冲刺每日报告三(Java-Team)

    第三天报告(10.27  周五) 团队:Java-Team 成员: 章辉宇(284) 吴政楠(286) 陈阳(PM:288) 韩华颂(142) 胡志权(143) github地址:https://gi ...

  4. 第八条:覆盖equals时请遵守通用约定

    ==是物理相等 equals是逻辑相等 因为每个类的实例对象本质上都是唯一的 ,利用物理相等(==)是指一个实例只能相等于它自己. 利用逻辑相等是(equals)指 一个实例是否和另一个实例的某些关键 ...

  5. day-3 python多线程编程知识点汇总

    python语言以容易入门,适合应用开发,编程简洁,第三方库多等等诸多优点,并吸引广大编程爱好者.但是也存在一个被熟知的性能瓶颈:python解释器引入GIL锁以后,多CPU场景下,也不再是并行方式运 ...

  6. python小练习之二

    title: python小练习之二 tags: 新建,模板,小书匠 grammar_cjkRuby: true --- python小练习之二 需求:实现用户登录,用户名和密码保存到文件里,连续输入 ...

  7. leetcode题解 6.ZigZag Conversion

    6.ZigZag Conversion 题目: The string "PAYPALISHIRING" is written in a zigzag pattern on a gi ...

  8. 新概念英语(1-105)Full Of Mistakes

    Lesson 105 Full of mistakes 错误百出 Listen to the tape then answer this question. What was Sandra's pre ...

  9. OpendID是什么?

    一.OpenID的概念 1.问题的提出 2.OpenID是什么? 3.规范演进 二.OpenID 的运行原理 1.参与者 2.运行原理 3.典型场景 4.开源实现 5.优点&缺点 优点:   ...

  10. hadoop2.6.0实践:004 启动伪分布式hadoop的进程

    [hadoop@LexiaofeiMaster hadoop-2.6.0]$ start-dfs.shStarting namenodes on [localhost]localhost: start ...