[USACO 07NOV]Cow Relays
Description
For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race using the T (2 ≤ T ≤ 100) cow trails throughout the pasture.
Each trail connects two different intersections (1 ≤ I1i ≤ 1,000; 1 ≤ I2i ≤ 1,000), each of which is the termination for at least two trails. The cows know the lengthi of each trail (1 ≤ lengthi ≤ 1,000), the two intersections the trail connects, and they know that no two intersections are directly connected by two different trails. The trails form a structure known mathematically as a graph.
To run the relay, the N cows position themselves at various intersections (some intersections might have more than one cow). They must position themselves properly so that they can hand off the baton cow-by-cow and end up at the proper finishing place.
Write a program to help position the cows. Find the shortest path that connects the starting intersection (S) and the ending intersection (E) and traverses exactly N cow trails.
给出一张无向连通图,求S到E经过k条边的最短路。
Input
Line 1: Four space-separated integers: N, T, S, and E
- Lines 2..T+1: Line i+1 describes trail i with three space-separated integers: lengthi , I1i , and I2i
Output
- Line 1: A single integer that is the shortest distance from intersection S to intersection E that traverses exactly N cow trails.
Sample Input
2 6 6 4
11 4 6
4 4 8
8 4 9
6 6 8
2 6 9
3 8 9
Sample Output
10
题解
解法一:
考虑有用的点数很少,我们可以哈希一下,建立邻接矩阵,矩阵加速求出经过$N$条边的从$S$到$T$的最短路。
#include<set>
#include<map>
#include<stack>
#include<ctime>
#include<cmath>
#include<queue>
#include<string>
#include<cstdio>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
#define RE register
#define IL inline
using namespace std;
const int INF=1e9; IL int Min(int a,int b){return a<b ? a:b;} int num[],pos;
int f[][];
int k,m,s,e,u,v,l;
struct mat
{
int a[][];
mat() {for (int i=;i<=pos;i++)for (int j=;j<=pos;j++) a[i][j]=INF;}
mat operator * (const mat &b)
{
mat ans;
for (RE int i=;i<=pos;i++)
for (RE int j=;j<=pos;j++)
for (RE int k=;k<=pos;k++)
ans.a[i][j]=Min(ans.a[i][j],a[i][k]+b.a[k][j]);
return ans;
}
}; int main()
{
scanf("%d%d%d%d",&k,&m,&s,&e);
for (RE int i=;i<=m;i++)
{
scanf("%d%d%d",&l,&u,&v);
if (!num[u]) num[u]=++pos;
if (!num[v]) num[v]=++pos;
f[num[u]][num[v]]=f[num[v]][num[u]]=l;
}
mat S,T;
for (RE int i=;i<=pos;i++) for (RE int j=;j<=pos;j++) if (f[i][j]) S.a[i][j]=T.a[i][j]=f[i][j];
k--;
while (k)
{
if (k&) S=S*T;
k>>=;
T=T*T;
}
printf("%d\n",S.a[num[s]][num[e]]);
return ;
}
矩乘
解法二:
利用倍增的思想。令$f[i][j][t]$表示从$i$到$j$经过$2^t$条边的最优值,做一遍$floyd$再统计答案即可。
#include<cmath>
#include<queue>
#include<ctime>
#include<stack>
#include<cstdio>
#include<string>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int INF=1e9; int num[],pos;
int f[][][];
int towards[][];
bool t;
int k,m,s,e,u,v,l; int main()
{
memset(f,/,sizeof(f));
memset(towards,/,sizeof(towards));
scanf("%d%d%d%d",&k,&m,&s,&e);
for (int i=;i<=m;i++)
{
scanf("%d%d%d",&l,&u,&v);
if (!num[u]) num[u]=++pos;
if (!num[v]) num[v]=++pos;
f[num[u]][num[v]][]=f[num[v]][num[u]][]=l;
}
int lim=log2(k);
for (int p=;p<=lim;p++)
for (int q=;q<=pos;q++)
for (int i=;i<=pos;i++)
for (int j=;j<=pos;j++)// if (i!=j&&q!=i)
if (f[i][j][p]>f[i][q][p-]+f[q][j][p-])
f[i][j][p]=f[i][q][p-]+f[q][j][p-];
int p=;
towards[num[s]][t]=;
while (k!=)
{
if (k&)
{
t=!t;
for (int i=;i<=pos;i++)
{
towards[i][t]=INF;
for (int j=;j<=pos;j++)
if (towards[i][t]>towards[j][!t]+f[i][j][p])
towards[i][t]=towards[j][!t]+f[i][j][p];
}
}
p++;
k=k>>;
}
printf("%d\n",towards[num[e]][t]);
return ;
}
倍增
[USACO 07NOV]Cow Relays的更多相关文章
- Cow Relays 【优先队列优化的BFS】USACO 2001 Open
Cow Relays Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Tota ...
- POJ3613 Cow Relays [矩阵乘法 floyd类似]
Cow Relays Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7335 Accepted: 2878 Descri ...
- poj3613 Cow Relays【好题】【最短路】【快速幂】
Cow Relays Time Limit: 1000MS Memory Limit: 65536K Total Submissions:9207 Accepted: 3604 Descrip ...
- poj 3613 Cow Relays
Cow Relays Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5411 Accepted: 2153 Descri ...
- 3298: [USACO 2011Open]cow checkers
3298: [USACO 2011Open]cow checkers Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 65 Solved: 26[Su ...
- BZOJ3298: [USACO 2011Open]cow checkers(佐威夫博弈)
3298: [USACO 2011Open]cow checkers Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 195 Solved: 96[S ...
- bzoj 3298: [USACO 2011Open]cow checkers -- 数学
3298: [USACO 2011Open]cow checkers Time Limit: 10 Sec Memory Limit: 128 MB Description 一天,Besssie准备 ...
- poj3613:Cow Relays(倍增优化+矩阵乘法floyd+快速幂)
Cow Relays Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7825 Accepted: 3068 Descri ...
- 「POJ3613」Cow Relays
「POJ3613」Cow Relays 传送门 就一个思想:\(N\) 遍 \(\text{Floyd}\) 求出经过 \(N\) 个点的最短路 看一眼数据范围,想到离散化+矩阵快速幂 代码: #in ...
随机推荐
- hibernate框架学习笔记6:事务
MySQL的事务.JDBC事务操作: 详细见这篇文章:比较详细 http://www.cnblogs.com/xuyiqing/p/8430214.html 如何在hibernate中配置隔离级别: ...
- 用virtualenv建立多个Python独立开发环境
不同的人喜欢用不同的方式建立各自的开发环境,但在几乎所有的编程社区,总有一个(或一个以上)开发环境让人更容易接受. 使用不同的开发环境虽然没有什么错误,但有些环境设置更容易进行便利的测试,并做一些重复 ...
- linux服务器操作系统,在相同环境下,哪个做lamp服务器更稳定点?哪个版本更稳定?
随着国内WEB服务越来越多,如何才能选择一个合适的linux服务器操作系统?在国内用的最多的好像是红帽子系列也就是red hat系列,但有些版本缺乏稳定性.新手在选择操作系统的时候最好只用偶数版本,还 ...
- 解析与动作联动得SDN数据平面
一种解析与执行联动的SDN可编程数据平面 现有问题和目标 在传统协议处理方式中,各层的协议类型和组合方式固定,使得添加或修改协议很困难(因为需要修改网络设备的解析模式) 基于解析和执行联动结构的可编程 ...
- Linux下关闭Tomcat残留线程
ps -ef | grep tomcat kill -9 {pid}
- raid5两块硬盘离线怎么办? 强制上线失败如何恢复数据
服务器故障描述: 客户使用Dell 2850服务器组建了raid5磁盘阵列,阵列中包含有6块硬盘(SCSI硬盘,单盘容量300G),服务器操作系统为linux Redhat4:文件系统为ext3文件系 ...
- Entity Framework Core Code First
参考地址:https://docs.microsoft.com/zh-cn/ef/core/get-started/aspnetcore/new-db
- Ubuntu server 16.04 中文版 终端不能显示中文的解决办法探讨
对于刚安装成功的Ubuntu server 16.04中文版,在终端显示中文的地方总是出现菱形的图标,看来该版本内置终端暂时不支持中文显示, 还是本人不知道具体操作配置,现通过百度查找以下几个解决方案 ...
- PHP常见排序算法
$a = [1, 3, 5, 2, 4, 6, 12, 60, 45, 10, 32];$len = count($a);$num=0;/* * 冒泡排序 * 原理:不停的对相邻两个数进行比较,直到最 ...
- Python-字典、集合、字符编码、文件操作整理-Day3
1.字典 1.1.为什么有字典: 有个需求,存所有人的信息 这时候列表就不能轻易的表示完全names = ['stone','liang'] 1.2.元组: 定义符号()t = (1,2,3)tupl ...