[SCOI 2010]字符串
Description
Input
Output
Sample Input
Sample Output
HINT
【数据范围】
对于30%的数据,保证1<=m<=n<=1000
对于100%的数据,保证1<=m<=n<=1000000
题解(转载)

首先,我们设选$1$为$(1,1)$,选$0$为$(1,-1)$
目标就是$(n+m,n-m)$
总方案数为$C_{n+m}^n$,因为有$n+m$个位置,放$n$个$1$
然后要减去不合法的即线路通过$y=-1$的。将线路与$y=-1$交点的左边沿着$y=-1$做对称操作,则最后等价于从$(0,-2)$走到$(n+m,n-m)$的方案数
所以向上走$n-m+2$
则有$x-y=n-m+2$
$x+y=n+m$
$x=n+1,y=m-1$
所以不合法方案为$C_{n+m}^{n+1}$
$ans=C_{n+m}^n-C_{n+m}^{n+1}$
求这些用模逆元,$O(n)$求解
//It is made by Awson on 2017.10.9
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define sqr(x) ((x)*(x))
using namespace std;
const int N = ;
const int MOD = ; int n, m;
int cnt[N+];
int A[N+], B[N+]; void prepare() {
A[] = B[] = A[] = B[] =;
for (int i = ; i <= N; i++)
B[i] = -(LL)(MOD/i)*B[MOD%i]%MOD;
for (int i = ; i <= N; i++)
A[i] = (LL)A[i-]*i%MOD,
B[i] = (LL)B[i-]*B[i]%MOD;
}
void work() {
scanf("%d%d", &n, &m);
prepare();
printf("%lld\n", ((LL)A[m+n]*B[m]%MOD*B[n]%MOD-(LL)A[m+n]*B[m-]%MOD*B[n+]%MOD+*MOD)%MOD);
}
int main() {
work();
return ;
}
[SCOI 2010]字符串的更多相关文章
- SCOI 2010 连续攻击游戏(贪心,图论)
SCOI 2010 连续攻击游戏 solution 直接就硬刚 我愿称贪心为暴力 因为题目中要求一定从小到大贪心,那么当前点的下标有能够选取的较大点,那么它一定可以和前面的一个较小点连接,所以可以直接 ...
- [SCOI 2010] 股票交易
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1855 [算法] 单调队列优化动态规划 [代码] #include<bits/s ...
- 【BZOJ 1857】【SCOI 2010】传送带
三分套三分,虽然简单,但是也得掌握,,, 时间复杂度$O(log_{1.5}^2 n)$ 一开始WA好几次发现是快速读入里没有return,这样也能过样例?_(:3J∠)_ #include<c ...
- SCOI 2010 序列操作
题目描述 lxhgww最近收到了一个01序列,序列里面包含了n个数,这些数要么是0,要么是1,现在对于这个序列有五种变换操作和询问操作: 0 a b 把[a, b]区间内的所有数全变成0 1 a b ...
- [SCOI 2010]传送带
Description 题库链接 在一个 \(2\) 维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段 \(AB\) 和线段 \(CD\) .在 \(AB\) 上的移动速度为 ...
- 解题:SCOI 2010 序列操作
题面 线段树......模板题(雾? 然而两种标记会互相影响,必须保证每次只放一个(不然就不知道怎么放了),具体的影响就是: 翻转标记会使得覆盖标记一起翻转,下放的时候就是各种swap 覆盖标记会抹掉 ...
- Scoi 2010 幸运数字
[题目描述]在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那些号码,比如68,666,888都是“幸运号码”!但是这种“幸 ...
- 【SCOI 2010】股票交易
题目 最近 \(\text{lxhgww}\) 又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,\(\text{lxhgww}\) 预测到了未来 \(T ...
- 【SCOI 2010】传送带
为了方便,我们不妨设$\rm P \lt Q,R$ 我们发现,有$\rm E$点在$\rm AB$上,$\rm F$点在$\rm CD$上,最优解一定是$\rm AE\rightarrow EF\ri ...
随机推荐
- Access数据库自动生成设计文档
在做Access数据库设计时,常常直接在access文件中建表,建字段,然后写设计文档时,又得重新再写一遍字段和表间关系.其实access数据库自己就支持自动生成数据库文档. 操作方法如下: 数据库工 ...
- 201621123050 《Java程序设计》第3周学习总结
1. 本周学习总结 初学面向对象,会学习到很多碎片化的概念与知识.尝试学会使用思维导图将这些碎片化的概念.知识点组织起来.请使用工具画出本周学习到的知识点及知识点之间的联系.步骤如下: 1.1 写出你 ...
- Flask 学习 八 用户角色
角色在数据库中表示 app/models.py class Role(db.Model): __tablename__='roles' id = db.Column(db.Integer,primar ...
- ajax的原理解析
一.关于同步与异步的分析: 异步传输是面向字符的传输,它的单位是字符:而同步传输是面向比特的传输,它的单位是桢,它传输的时候要求接受方和发送方的时钟是保持一致的.而ajax就是采用的异步请求方式的. ...
- 第三章Hibernate关联映射
第三章Hibernate关联映射 一.关联关系 类与类之间最普通的关系就是关联关系,而且关联是有方向的. 以部门和员工为列,一个部门下有多个员工,而一个员工只能属于一个部门,从员工到部门就是多对一关联 ...
- BizTalk 2016 配置 RosettaNet遇到的坑
本文只针对已经安装好BizTalk 2016 需要在安装RosettaNet加速器的伙伴. IIS配置 权限问题 错误信息 Failed to get IIS metabase property. E ...
- Web移动端适配总结
移动端适配的相关概念以及几种方案总结 适配相关概念 布局视口(layout viewport):html元素的上一级容器即顶级容器,用于解决页面在手机上显示的问题.大部分移动设备都将这个视口分辨率设置 ...
- win-zabbix_agent端配置解析
Zabbix agent 在windows上安装部署 部署windows服务器需要在agent服务器上添加到10.4.200.2的路由 蓝泰服务器需要添加10.0.90.5的网关,联通的机器需要添加到 ...
- Python3 re模块(正则表达式)
一:什么是正则? 正则就是用一些具有特殊含义的符号组合到一起(称为正则表达式)来描述字符或者字符串的方法.或者说:正则就是用来描述一类事物的规则. (在Python中)它内嵌在Python中,并通过r ...
- eclipse版本对应的jdk版本
Installing Eclipse is relatively easy, but does involve a few steps and software from at least two d ...