In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) for which all other nodes are descendants of this node, plus every node has exactly one parent, except for the root node which has no parents.

The given input is a directed graph that started as a rooted tree with N nodes (with distinct values 1, 2, ..., N), with one additional directed edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.

The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [u, v] that represents a directed edge connecting nodes u and v, where u is a parent of child v.

Return an edge that can be removed so that the resulting graph is a rooted tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array.

Example 1:

Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given directed graph will be like this:
1
/ \
v v
2-->3

Example 2:

Input: [[1,2], [2,3], [3,4], [4,1], [1,5]]
Output: [4,1]
Explanation: The given directed graph will be like this:
5 <- 1 -> 2
^ |
| v
4 <- 3

Note:

  • The size of the input 2D-array will be between 3 and 1000.
  • Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.

这道题是之前那道 Redundant Connection 的拓展,那道题给的是无向图,只需要删掉组成环的最后一条边即可,归根到底就是检测环就行了。而这道题给的是有向图,整个就复杂多了,因为有多种情况存在,比如给的例子1就是无环,但是有入度为2的结点3。再比如例子2就是有环,但是没有入度为2的结点。其实还有一种情况例子没有给出,就是既有环,又有入度为2的结点。好,现在就来总结一下这三种情况:

第一种:无环,但是有结点入度为2的结点(结点3)

[[1,2], [1,3], [2,3]]

 / \
v v
-->

第二种:有环,没有入度为2的结点

[[1,2], [2,3], [3,4], [4,1], [1,5]]

 <-  ->
^ |
| v
<-

第三种:有环,且有入度为2的结点(结点1)

[[1,2],[2,3],[3,1],[1,4]]

    /
v / ^
v \
-->

对于这三种情况的处理方法各不相同,首先对于第一种情况,返回的产生入度为2的后加入的那条边 [2, 3],而对于第二种情况,返回的是刚好组成环的最后加入的那条边 [4, 1],最后对于第三种情况返回的是组成环,且组成入度为2的那条边 [3, 1]。

明白了这些,先来找入度为2的点,如果有的话,那么将当前产生入度为2的后加入的那条边标记为 second,前一条边标记为 first。然后来找环,为了方便起见,找环使用联合查找 Union Find 的方法,可参见 Redundant Connection 中的解法三。当找到了环之后,如果 first 不存在,说明是第二种情况,返回刚好组成环的最后加入的那条边。如果 first 存在,说明是第三种情况,返回 first。如果没有环存在,说明是第一种情况,返回 second,参见代码如下:

class Solution {
public:
vector<int> findRedundantDirectedConnection(vector<vector<int>>& edges) {
int n = edges.size();
vector<int> root(n + , ), first, second;
for (auto& edge : edges) {
if (root[edge[]] == ) {
root[edge[]] = edge[];
} else {
first = {root[edge[]], edge[]};
second = edge;
edge[] = ;
}
}
for (int i = ; i <= n; ++i) root[i] = i;
for (auto& edge : edges) {
if (edge[] == ) continue;
int x = getRoot(root, edge[]), y = getRoot(root, edge[]);
if (x == y) return first.empty() ? edge : first;
root[x] = y;
}
return second;
}
int getRoot(vector<int>& root, int i) {
return i == root[i] ? i : getRoot(root, root[i]);
}
};

讨论:使用联合查找 Union Find 的方法一般都需要写个子函数,来查找祖宗结点,上面的解法 getRoot() 函数就是这个子函数,使用递归的形式来写的,其实还可以用迭代的方式来写,下面这两种写法都可以:

int getRoot(vector<int>& root, int i) {
while (i != root[i]) {
root[i] = root[root[i]];
i = root[i];
}
return i;
}
int getRoot(vector<int>& root, int i) {
while (i != root[i]) i = root[i];
return i;
}

Github 同步地址:

https://github.com/grandyang/leetcode/issues/685

类似题目:

Redundant Connection

Friend Circles

Accounts Merge

Number of Islands II

Graph Valid Tree

Number of Connected Components in an Undirected Graph

Similar String Groups

参考资料:

https://leetcode.com/problems/redundant-connection-ii/

https://leetcode.com/problems/redundant-connection-ii/discuss/108045/C++Java-Union-Find-with-explanation-O(n)

https://leetcode.com/problems/redundant-connection-ii/discuss/108058/one-pass-disjoint-set-solution-with-explain

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Redundant Connection II 冗余的连接之二的更多相关文章

  1. [LeetCode] 685. Redundant Connection II 冗余的连接之二

    In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) f ...

  2. [LeetCode] 685. Redundant Connection II 冗余的连接之 II

    In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) f ...

  3. [LeetCode] Redundant Connection 冗余的连接

    In this problem, a tree is an undirected graph that is connected and has no cycles. The given input ...

  4. LeetCode 685. Redundant Connection II

    原题链接在这里:https://leetcode.com/problems/redundant-connection-ii/ 题目: In this problem, a rooted tree is ...

  5. [Swift]LeetCode685. 冗余连接 II | Redundant Connection II

    In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) f ...

  6. [LeetCode] Palindrome Permutation II 回文全排列之二

    Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...

  7. [LeetCode] Arithmetic Slices II - Subsequence 算数切片之二 - 子序列

    A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...

  8. [LeetCode] Contains Duplicate II 包含重复值之二

    Given an array of integers and an integer k, return true if and only if there are two distinct indic ...

  9. [LeetCode] Single Number II 单独的数字之二

    Given an array of integers, every element appears three times except for one. Find that single one. ...

随机推荐

  1. 依赖layui form模块 复选框tree插件(拓展可根据属性单选还是多选,数据反选)

    近些天接的项目用的是layui.以前没用过,踩了很多坑,坑就不多说了,直接说layui的tree.因为自带的tree不满足需求,所以在论坛.博客上找了很久终于找到了可以复选的的插件,原文地址:http ...

  2. JWT 简介

    JWT是一种用于双方之间传递安全信息的简洁的.URL安全的表述性声明规范.JWT作为一个开放的标准(RFC 7519),定义了一种简洁的,自包含的方法用于通信双方之间以Json对象的形式安全的传递信息 ...

  3. js和jquery实现显示隐藏

    (选择的重要性) 当点击同一个按钮的时候实现显示影藏 <a id="link" class="b-btn-four task-resolve add-sub-tas ...

  4. 初始配置JDK

    什么是java? java是一门编程语言  编程语言有很多种 你比如 C语言 等等 为什么学习java呢! 因为你要和计算机交互  当然了你用汉语跟她说她听不懂 所以你要学习编程语言 那么额咱们的ja ...

  5. Jquery判断单选框是否选中和获取选中的值

    第一种:利用选中值判断选中 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http ...

  6. CocoaPods 基础知识--------安装 及 使用第三方库

    极客学院:http://www.jikexueyuan.com/course/2665_2.html?ss=1

  7. NOIP2016 天天爱跑步 正解

    暴力移步 http://www.cnblogs.com/TheRoadToTheGold/p/6673430.html 首先解决本题应用的知识点: dfs序——将求子树的信息(树形)转化为求一段连续区 ...

  8. 01-JavaScript之变量

    这个系列的文章主要讲解JavaScript的常见用法,适合于初中级的前端开发人员,也可以对比TypeScript的系列文章来看. 先介绍JavaScript的变量与常见变量的函数,代码如下: //变量 ...

  9. JAVA_SE基础——22.面向对象的概念

    我写博客是为了提升自己和为了进入黑马程序员学习,还有分享些自己的心得给大家,希望能帮助大家学习JAVA. 我是自学的,如果写的有错误或者能更好的修改的请提出. 在这里我先引用下<think in ...

  10. vscode使用shell

    https://stackoverflow.com/questions/42606837/how-to-use-bash-on-windows-from-visual-studio-code-inte ...