题面

Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area there are N shopkeepers (marked from 1 to N) which stocks goods from him.Dearboy has M supply places (marked from 1 to M), each provides K different kinds of goods (marked from 1 to K). Once shopkeepers order goods, Dearboy should arrange which supply place provide how much amount of goods to shopkeepers to cut down the total cost of transport.

It's known that the cost to transport one unit goods for different kinds from different supply places to different shopkeepers may be different. Given each supply places' storage of K kinds of goods, N shopkeepers' order of K kinds of goods and the cost to transport goods for different kinds from different supply places to different shopkeepers, you should tell how to arrange the goods supply to minimize the total cost of transport.

Input

The input consists of multiple test cases. The first line of each test case contains three integers N, M, K (0 < N, M, K < 50), which are described above. The next N lines give the shopkeepers' orders, with each line containing K integers (there integers are belong to [0, 3]), which represents the amount of goods each shopkeeper needs. The next M lines give the supply places' storage, with each line containing K integers (there integers are also belong to [0, 3]), which represents the amount of goods stored in that supply place.

Then come K integer matrices (each with the size N * M), the integer (this integer is belong to (0, 100)) at the i-th row, j-th column in the k-th matrix represents the cost to transport one unit of k-th goods from the j-th supply place to the i-th shopkeeper.

The input is terminated with three "0"s. This test case should not be processed.

Output

For each test case, if Dearboy can satisfy all the needs of all the shopkeepers, print in one line an integer, which is the minimum cost; otherwise just output "-1".

Sample Input

1 3 3
1 1 1
0 1 1
1 2 2
1 0 1
1 2 3
1 1 1
2 1 1 1 1 1
3
2
20 0 0 0

Sample Output

4
-1

题解

我首先翻译一下题目

尤其说清楚一下输入的格式。。网上的说的都不太清楚

第一行是三个数字:N,M,K

分别表示有N个商店,M个供货商,K中货物

接下来是N行,每行K个整数

对于第i行第j列,表示的是第i个商店对于货物j的需求

再接着,M行,每行K个整数

对于第i行第j列,表示的是第i个供货商对于货物j的存货

接下来有K个N*M的矩形

第X个矩形的第i行第j列表示的是

从供货商j 运送一个单位的 货物X 到商店i的 花费

最后要求的是

在满足 所有商店的供应的 情况下的 最小花费

如果无法满足,则输出-1

题解:

首先弄清楚题目的意思

考虑k种货物都是独立的,因此只需要考虑k遍最小的费用然后求和

对于每一次的最小费用,显然直接求解最小费用流即可,

对于图的构建并不难,

但是要考虑清楚每条边的容量

从汇点向每个供货商连接一条容量为存货数量,费用为0的边

然后从每个供货商向每个商店连接一条容量为INF,费用为花费的边(容量连接成存货数量也行)

从商店向汇点连接一条容量为需求,费用为0的边

求解K次最小费用流累加答案即可。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;
#define MAX 200
#define MAXL 200000
#define INF 1000000000
struct Line
{
int v,next,w,fb,fy;
}e[MAXL];
int h[MAX],cnt=1,cost,ff;
int tot[MAX],need[MAX][MAX],have[MAX][MAX],Cost[MAX][MAX][MAX];
int pe[MAX],pr[MAX],Ans;
inline void Add(int u,int v,int w,int fy)
{
e[cnt]=(Line){v,h[u],w,cnt+1,fy};
h[u]=cnt++;
e[cnt]=(Line){u,h[v],0,cnt-1,-fy};
h[v]=cnt++;
}
int dis[MAX],S,T,N,M,K; bool vis[MAX];
bool SPFA()
{
memset(dis,63,sizeof(dis));
dis[S]=0;
queue<int> Q;while(!Q.empty())Q.pop();
Q.push(S);
memset(vis,0,sizeof(vis));
while(!Q.empty())
{
int u=Q.front();Q.pop();
vis[u]=false;
for(int i=h[u];i;i=e[i].next)
{
int f=dis[u]+e[i].fy,v=e[i].v;
if(e[i].w&&dis[v]>f)
{
dis[v]=f;
pe[v]=i;
pr[v]=u;
if(!vis[v])
{
vis[v]=true;
Q.push(v);
}
}
}
}
if(dis[T]==dis[T+1])return false;//增广失败
int re=INF;
for(int v=T;v!=S;v=pr[v])
re=min(re,e[pe[v]].w);//计算增广的最大流
for(int v=T;v!=S;v=pr[v])
{
e[pe[v]].w-=re;
e[e[pe[v]].fb].w+=re;
}
ff+=re;
cost+=re*dis[T];
return true;
}
int main()
{
while(233)
{
cin>>N>>M>>K;
if(N==0&&M==0&&K==0)break;
memset(tot,0,sizeof(tot));
for(int i=1;i<=N;++i)
{
for(int j=1;j<=K;++j)
{
cin>>need[i][j];
tot[j]+=need[i][j];
}
}
for(int i=1;i<=M;++i)
{
for(int j=1;j<=K;++j)
{
cin>>have[i][j];
tot[j]-=have[i][j];
}
}
for(int i=1;i<=K;++i)
{
for(int j=1;j<=N;++j)
for(int k=1;k<=M;++k)
cin>>Cost[i][j][k];
}
S=0;T=N+M+1;
bool fl=true;
for(int k=1;k<=K;++k)
if(tot[k]>0)//需求多于提供
{
fl=false;
break;
}
if(!fl)
{
fl=true;
printf("%d\n",-1);
continue;
}
Ans=0;
for(int k=1;k<=K;++k)//K遍费用流
{
cnt=1;
memset(h,0,sizeof(h));
for(int j=1;j<=M;++j)
{
Add(S,j,have[j][k],0);
for(int i=1;i<=N;++i)
Add(j,i+M,have[j][k],Cost[k][i][j]);
}
for(int i=1;i<=N;++i)
Add(i+M,T,need[i][k],0);
cost=ff=0;
while(SPFA());
Ans+=cost;
}
printf("%d\n",Ans);
}
return 0;
}

POJ 2516 Minimum Cost (费用流)的更多相关文章

  1. POJ 2516 Minimum Cost (最小费用最大流)

    POJ 2516 Minimum Cost 链接:http://poj.org/problem?id=2516 题意:有M个仓库.N个商人.K种物品.先输入N,M.K.然后输入N行K个数,每一行代表一 ...

  2. Poj 2516 Minimum Cost (最小花费最大流)

    题目链接: Poj  2516  Minimum Cost 题目描述: 有n个商店,m个仓储,每个商店和仓库都有k种货物.嘛!现在n个商店要开始向m个仓库发出订单了,订单信息为当前商店对每种货物的需求 ...

  3. POJ 2516 Minimum Cost (网络流,最小费用流)

    POJ 2516 Minimum Cost (网络流,最小费用流) Description Dearboy, a goods victualer, now comes to a big problem ...

  4. POJ - 2516 Minimum Cost 每次要跑K次费用流

    传送门:poj.org/problem?id=2516 题意: 有m个仓库,n个买家,k个商品,每个仓库运送不同商品到不同买家的路费是不同的.问为了满足不同买家的订单的最小的花费. 思路: 设立一个源 ...

  5. POJ - 2516 Minimum Cost(最小费用最大流)

    1.K种物品,M个供应商,N个收购商.每种物品从一个供应商运送到一个收购商有一个单位运费.每个收购商都需要K种物品中的若干.求满足所有收购商需求的前提下的最小运费. 2.K种物品拆开来,分别对每种物品 ...

  6. POJ 2516 Minimum Cost(最小费用流)

    Description Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his s ...

  7. POJ 2516 Minimum Cost 最小费用流

    题目: 给出n*kk的矩阵,格子a[i][k]表示第i个客户需要第k种货物a[i][k]单位. 给出m*kk的矩阵,格子b[j][k]表示第j个供应商可以提供第k种货物b[j][k]单位. 再给出k个 ...

  8. POJ 2516 Minimum Cost 最小费用流 难度:1

    Minimum Cost Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 13511   Accepted: 4628 Des ...

  9. POJ 2516 Minimum Cost [最小费用最大流]

    题意略: 思路: 这题比较坑的地方是把每种货物单独建图分开算就ok了. #include<stdio.h> #include<queue> #define MAXN 500 # ...

随机推荐

  1. windows 下编译 OpenSSL1.0.2l 版

    1.需要的软件工具: microsoft visual studio2013(或2010以后其他版本) Perl 软件, 版本为strawberry - perl - 5.26.0.1 - 64bit ...

  2. PHP生成图片验证码、点击切换实例

    http://www.jb51.net/article/51506.htm 现在让我们来看下 PHP 代码 复制代码代码如下: <?php session_start();function ra ...

  3. git添加本地仓库与远程仓库连接

    在本地建立一个文件夹,需要与远程git仓库进行连接,具体方法: <1>首先进入所在文件目录执行:  git init 初始化git,紧接着 git  add . git commit -m ...

  4. 编译安装python3.6后pip3无法安装模块问题处理

    编译安装python3.6之后,使用pip3命令安装第三方库效果如图所示: pip is configured with locations that require TLS/SSL, however ...

  5. 使用PowerDesigner对NAME和COMMENT互相转换

    本文来自我的github pages博客http://galengao.github.io/ 即www.gaohuirong.cn 在使用PowerDesigner对数据库进行概念模型和物理模型设计时 ...

  6. CentOS下安装配置cmake

    安装环境:CentOS-6.4   安装方式:源码编译安装  软件:cmake-2.8.5.tar.gz 下载地址暂时不提供,去百度搜一下准有 安装前提 系统中已经安装了gcc. ncurses-de ...

  7. Swagger2 Oauth2.0 令牌 请求头

    @EnableSwagger2 @Bean public Docket createRestApi() { ParameterBuilder tokenPar = new ParameterBuild ...

  8. Tomcat重定向

    tomcat默认情况下不带www的域名是不会跳转到带www的域名的,而且也无法像apache那样通过配置.htaccess来实现.如果想要把不带"www'的域名重定向到带"www& ...

  9. 为你的APK进行数字签名

    摘要: 我们需要为 APK进行数字签名,这样才能发布到 Google Play商店.解决方法很简单,使用 Java的keytool命令创建证书并在 Gradle构建文件的 signingConfigs ...

  10. AVS、MPEG-2、H264标准文档

    联合信源对AVS解码源码和相应的AVS码流.AVS码流太大,可以从http://cosoft.org.cn/projects/avsdec下载.解压avsdec_source.zip后,用VC6编译a ...