本文大致脉络:

对每张图片,作者首先使用 P. Doll´ar and C. Zitnick. Structured forests for fast edge detection. ICCV , 2013. 4, 5 来产生边缘图(edge probability map),请注意probability,因为下面connected regions 之间的 similarity 就是通过 这个probability 来体现的, 这里的probability 指的是该点的像素属于边缘的概率。对边缘图进行watershed得到轮廓图,通过对轮廓图进行一系列操作得到UCM图,如下图:

在UCM图里,黑色区域部分可以认为是connected regions,该图通过白色部分分离开来,白色部分的每个像素都是一个实值(0-1),图中每条边的一小段的像素值都是相同的,该值表示该边所连接区域的不相似度,值越小,这两个区域越有可能合并称为一个区域。利用UCM图,获取图像的superpixels,也就是一个个connected regions ,任意两个相邻的 regions 之间都有一个不相似度值。

接下来就是要对这所有的N个regions hierarchically 合并了, 方法就是将N个叶子节点两两合并,最终得到 N-1个非叶子节点,这样就构造了一颗完全二叉树,二叉树的根部是整个图像区域,叶子节点就是一开始得到的 superpixels。这样一张UCM图可以得到一个 hierarchical segmentation。这里的初始的superpixels和组合后的非叶子节点都可以看做是一个proposals,这样一共是2N-1个proposals。

得到该树后,作者从二叉树离获取 4个list 的proposals。分别是 singleton, pairs, triplets ,fours。在获取的时候使用了Pareto optimization,看着挺高深,其实就是 4个整数值,我们以这样的一个组合为例(700,2000,3000,2000)。700对应于 singleton,表示从 二叉树中从顶向下取前700个proposals。对于二叉树的非根节点来说,每个节点都有父母,每个父母都有自己的兄弟,那么每个节点都有一个叔叔,pairs就表示叔叔与侄子的组合,比如说4个节点 1、2、3、4,1和2 组成了5,3和4组成了6,那么5就是1和2 的父节点,6是3和4的父节点,5是3和4的叔叔,那么在pairs里5、3可以是一种组合,一种新的proposals,2000表示从这所有的叔叔-侄子组合中,自顶向下去2000个这样的组着,那么triplets中的3000就表示 侄子-叔叔-叔叔的叔叔的3000中组合,同理fours. 这样对每张UCM图,会到一个一个bottom-up组合,然后从该组合中可以得到4个list的proposals。

在作者的代码中实际上是对原来的图片进行scale (2,1,0.5),这样一共可以得到3张UCM图,然后将三张UCM图融合,这样一共有 四种UCM图,每种UCM都可以得到4个list的proposals,一共有16个lists的proposals,作者收集zhexieproposals,然后对他们进行 overlap>0.95的筛选。然后再进行hole-filling,因为在之前的组合中可能某种proposals会有明显的hole inside。

最后,在得到一个完整的proposals set后,作者提取每个proposals 的 面积、周长、边界强度等2D基本特征,用这些特征组成向量来表示该proposal,然后训练随机森林回归器来对这些proposals排名。

作者提供了两个版本的UCM,Fast UCM 和Accurate UCM正如图所示, Fast UCM 最终会得到4个list的proposals, Accurate 会得到16个list的 proposals。

最后附上MCG简易流程图:

论文笔记(9):Multiscale Combinatorial Grouping的更多相关文章

  1. Multiscale Combinatorial Grouping 学习和理解源代码(一)

    目标探测由于所做的最新研究.因此,这一领域的一般阅读文章.发现这篇文章,效果是比较新的比较好.在如此仔细研究.贴纸和共享.下面已经发布若干个连续的,分别对论文和代码进行大致地介绍,最后依据自己的实验对 ...

  2. Video Frame Synthesis using Deep Voxel Flow 论文笔记

    Video Frame Synthesis using Deep Voxel Flow 论文笔记 arXiv 摘要:本文解决了模拟新的视频帧的问题,要么是现有视频帧之间的插值,要么是紧跟着他们的探索. ...

  3. 论文笔记:CNN经典结构1(AlexNet,ZFNet,OverFeat,VGG,GoogleNet,ResNet)

    前言 本文主要介绍2012-2015年的一些经典CNN结构,从AlexNet,ZFNet,OverFeat到VGG,GoogleNetv1-v4,ResNetv1-v2. 在论文笔记:CNN经典结构2 ...

  4. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

  5. 论文笔记之:Visual Tracking with Fully Convolutional Networks

    论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...

  6. Deep Learning论文笔记之(八)Deep Learning最新综述

    Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...

  7. Twitter 新一代流处理利器——Heron 论文笔记之Heron架构

    Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture ...

  8. Deep Learning论文笔记之(六)Multi-Stage多级架构分析

    Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些 ...

  9. Multimodal —— 看图说话(Image Caption)任务的论文笔记(一)评价指标和NIC模型

    看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图 ...

随机推荐

  1. 深入cocos2d-x中的touch事件

    深入cocos2d-x中的touch事件 在文章cocos2d-x中处理touch事件中简单讨论过怎样处理touch事件, 那么今天来深入了解下cocos2d-x中是怎样分发touch事件的. 我们最 ...

  2. docker swarm集群搭建

    本文来自我的github pages博客http://galengao.github.io/ 即www.gaohuirong.cn 摘要: swarm是docker原生的集群管理软件,与kuberne ...

  3. eslint规则

    碰到eslint报错, 把错误的提示拷贝在这里Ctrl + F找到复制到eslint.js里面就行了. "off"或者0,不启用这个规则 "warn"或者1,出 ...

  4. Mysql(一):初识数据库

    一 数据库管理软件的由来 基于我们之前所学,数据要想永久保存,都是保存于文件中,毫无疑问,一个文件仅仅只能存在于某一台机器上. 如果我们暂且忽略直接基于文件来存取数据的效率问题,并且假设程序所有的组件 ...

  5. CentOS常用命令搜集

    centos是32或者64位:getconf LONG_BIT

  6. EmguCV创建/保存图片

    Image图片类 public Image(Bitmap bmp);//采用 Bitmap 图像创建. public Image(string fileName);//指定路径创建图像. public ...

  7. 网卡驱动引起openstack的mtu问题

    一套Pike版本的openstack测试环境,使用vlan模式的网络,数据网网卡使用的是绿联的usb百兆网卡,遇到了虚拟机网络异常的问题.同一个vlan下,不同宿主机上的两台虚拟机,相互之间可以pin ...

  8. TCP/IP读书笔记(4) IPv4和IPv6 路由选择

    TCP/IP读书笔记(4) IPv4和IPv6 路由选择 网络层是位于链路层之上,TCP/IP模型中网络层的核心协议是IP协议(Internet protocol). 目前主流的IP协议是IPv4(I ...

  9. Hadoop压缩

    为什幺要压缩? 压缩会提高计算速度?这是因为mapreduce计算会将数据文件分散拷贝到所有datanode上,压缩可以减少数据浪费在带宽上的时间,当这些时间大于压缩/解压缩本身的时间时,计算速度就会 ...

  10. CDN中前端层的复制

    前端层的复制是为了提高静态内容分发的性能和可扩展性.将静态内容的分发转由边缘服务器来完成是为了解决可扩展性的问题,因为这样做可以避免出现在对等点和广域网链路处的网络拥堵风险,而这两个地方的拥堵是网络延 ...