论文笔记(9):Multiscale Combinatorial Grouping
本文大致脉络:
对每张图片,作者首先使用 P. Doll´ar and C. Zitnick. Structured forests for fast edge detection. ICCV , 2013. 4, 5 来产生边缘图(edge probability map),请注意probability,因为下面connected regions 之间的 similarity 就是通过 这个probability 来体现的, 这里的probability 指的是该点的像素属于边缘的概率。对边缘图进行watershed得到轮廓图,通过对轮廓图进行一系列操作得到UCM图,如下图:
在UCM图里,黑色区域部分可以认为是connected regions,该图通过白色部分分离开来,白色部分的每个像素都是一个实值(0-1),图中每条边的一小段的像素值都是相同的,该值表示该边所连接区域的不相似度,值越小,这两个区域越有可能合并称为一个区域。利用UCM图,获取图像的superpixels,也就是一个个connected regions ,任意两个相邻的 regions 之间都有一个不相似度值。
接下来就是要对这所有的N个regions hierarchically 合并了, 方法就是将N个叶子节点两两合并,最终得到 N-1个非叶子节点,这样就构造了一颗完全二叉树,二叉树的根部是整个图像区域,叶子节点就是一开始得到的 superpixels。这样一张UCM图可以得到一个 hierarchical segmentation。这里的初始的superpixels和组合后的非叶子节点都可以看做是一个proposals,这样一共是2N-1个proposals。
得到该树后,作者从二叉树离获取 4个list 的proposals。分别是 singleton, pairs, triplets ,fours。在获取的时候使用了Pareto optimization,看着挺高深,其实就是 4个整数值,我们以这样的一个组合为例(700,2000,3000,2000)。700对应于 singleton,表示从 二叉树中从顶向下取前700个proposals。对于二叉树的非根节点来说,每个节点都有父母,每个父母都有自己的兄弟,那么每个节点都有一个叔叔,pairs就表示叔叔与侄子的组合,比如说4个节点 1、2、3、4,1和2 组成了5,3和4组成了6,那么5就是1和2 的父节点,6是3和4的父节点,5是3和4的叔叔,那么在pairs里5、3可以是一种组合,一种新的proposals,2000表示从这所有的叔叔-侄子组合中,自顶向下去2000个这样的组着,那么triplets中的3000就表示 侄子-叔叔-叔叔的叔叔的3000中组合,同理fours. 这样对每张UCM图,会到一个一个bottom-up组合,然后从该组合中可以得到4个list的proposals。
在作者的代码中实际上是对原来的图片进行scale (2,1,0.5),这样一共可以得到3张UCM图,然后将三张UCM图融合,这样一共有 四种UCM图,每种UCM都可以得到4个list的proposals,一共有16个lists的proposals,作者收集zhexieproposals,然后对他们进行 overlap>0.95的筛选。然后再进行hole-filling,因为在之前的组合中可能某种proposals会有明显的hole inside。
最后,在得到一个完整的proposals set后,作者提取每个proposals 的 面积、周长、边界强度等2D基本特征,用这些特征组成向量来表示该proposal,然后训练随机森林回归器来对这些proposals排名。
作者提供了两个版本的UCM,Fast UCM 和Accurate UCM正如图所示, Fast UCM 最终会得到4个list的proposals, Accurate 会得到16个list的 proposals。
最后附上MCG简易流程图:
论文笔记(9):Multiscale Combinatorial Grouping的更多相关文章
- Multiscale Combinatorial Grouping 学习和理解源代码(一)
目标探测由于所做的最新研究.因此,这一领域的一般阅读文章.发现这篇文章,效果是比较新的比较好.在如此仔细研究.贴纸和共享.下面已经发布若干个连续的,分别对论文和代码进行大致地介绍,最后依据自己的实验对 ...
- Video Frame Synthesis using Deep Voxel Flow 论文笔记
Video Frame Synthesis using Deep Voxel Flow 论文笔记 arXiv 摘要:本文解决了模拟新的视频帧的问题,要么是现有视频帧之间的插值,要么是紧跟着他们的探索. ...
- 论文笔记:CNN经典结构1(AlexNet,ZFNet,OverFeat,VGG,GoogleNet,ResNet)
前言 本文主要介绍2012-2015年的一些经典CNN结构,从AlexNet,ZFNet,OverFeat到VGG,GoogleNetv1-v4,ResNetv1-v2. 在论文笔记:CNN经典结构2 ...
- Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文, ...
- 论文笔记之:Visual Tracking with Fully Convolutional Networks
论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015 CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...
- Deep Learning论文笔记之(八)Deep Learning最新综述
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...
- Twitter 新一代流处理利器——Heron 论文笔记之Heron架构
Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture ...
- Deep Learning论文笔记之(六)Multi-Stage多级架构分析
Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些 ...
- Multimodal —— 看图说话(Image Caption)任务的论文笔记(一)评价指标和NIC模型
看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图 ...
随机推荐
- java设计模式-----2、工厂方法模式
再看工厂方法模式之前先看看简单工厂模式 工厂方法模式(FACTORY METHOD)同样属于一种常用的对象创建型设计模式,又称为多态工厂模式,此模式的核心精神是封装类中不变的部分,提取其中个性化善变的 ...
- PowerDesigner 简单应用(转载)
PowerDesigner是一款功能非常强大的建模工具软件,足以与Rose比肩,同样是当今最著名的建模软件之一.Rose是专攻UML对象模型的建模工具,之后才向数据库建模发展,而PowerDesign ...
- 解决 java.lang.ClassNotFoundException: org.springframework.beans.factory.config.EmbeddedValueResolver
1.今天用maven配置了一下dubbo的项目发现启动项目后意外报错: java.lang.ClassNotFoundException: org.springframework.beans.fact ...
- SpringMvc解决Restful中文乱码问题
中文乱码问题解决方式: <!-- 解决中文乱码问题 --> <filter> <filter-name>CharacterEncodingFilter</fi ...
- Android ADB Server启动失败
启动Android Stdio的时候报如下错误: Unable to create Debug Bridge: Unable to start adb server: error: could not ...
- uva10976
数学题. 1. 因为 1/k = 1/x +1/y 所以 1/k > 1/y 那么 y > k 2 . 因为 x >= y 所以 1/k - 1/y <= 1/y 那么 y & ...
- node实现jsonp跨域
1. 搭建node server //引入模块 var http=require("http"); var fs=require("fs");var url = ...
- SpringMVC的标签库
Spring2.0版本开始后,提供了一组功能强大的标签用来在JSP和SpringWebMVC中处理表单元素 ,可以用来访问控制器处理命令对象和绑定数据: 以下是表单标签 ...
- linux zabbix监控服务器搭建
搭建Zabbix监控服务器 准备运行环境(lamp) [root@zhuji1 ~]# yum -y install httpd [root@zhuji1 ~]# yum -y install php ...
- DataCleaner第一章
Part1. Introduction to DataCleaner 介绍DataCleaner |--What is data quality(DQ) 数据质量? |--What is data p ...