本文大致脉络:

对每张图片,作者首先使用 P. Doll´ar and C. Zitnick. Structured forests for fast edge detection. ICCV , 2013. 4, 5 来产生边缘图(edge probability map),请注意probability,因为下面connected regions 之间的 similarity 就是通过 这个probability 来体现的, 这里的probability 指的是该点的像素属于边缘的概率。对边缘图进行watershed得到轮廓图,通过对轮廓图进行一系列操作得到UCM图,如下图:

在UCM图里,黑色区域部分可以认为是connected regions,该图通过白色部分分离开来,白色部分的每个像素都是一个实值(0-1),图中每条边的一小段的像素值都是相同的,该值表示该边所连接区域的不相似度,值越小,这两个区域越有可能合并称为一个区域。利用UCM图,获取图像的superpixels,也就是一个个connected regions ,任意两个相邻的 regions 之间都有一个不相似度值。

接下来就是要对这所有的N个regions hierarchically 合并了, 方法就是将N个叶子节点两两合并,最终得到 N-1个非叶子节点,这样就构造了一颗完全二叉树,二叉树的根部是整个图像区域,叶子节点就是一开始得到的 superpixels。这样一张UCM图可以得到一个 hierarchical segmentation。这里的初始的superpixels和组合后的非叶子节点都可以看做是一个proposals,这样一共是2N-1个proposals。

得到该树后,作者从二叉树离获取 4个list 的proposals。分别是 singleton, pairs, triplets ,fours。在获取的时候使用了Pareto optimization,看着挺高深,其实就是 4个整数值,我们以这样的一个组合为例(700,2000,3000,2000)。700对应于 singleton,表示从 二叉树中从顶向下取前700个proposals。对于二叉树的非根节点来说,每个节点都有父母,每个父母都有自己的兄弟,那么每个节点都有一个叔叔,pairs就表示叔叔与侄子的组合,比如说4个节点 1、2、3、4,1和2 组成了5,3和4组成了6,那么5就是1和2 的父节点,6是3和4的父节点,5是3和4的叔叔,那么在pairs里5、3可以是一种组合,一种新的proposals,2000表示从这所有的叔叔-侄子组合中,自顶向下去2000个这样的组着,那么triplets中的3000就表示 侄子-叔叔-叔叔的叔叔的3000中组合,同理fours. 这样对每张UCM图,会到一个一个bottom-up组合,然后从该组合中可以得到4个list的proposals。

在作者的代码中实际上是对原来的图片进行scale (2,1,0.5),这样一共可以得到3张UCM图,然后将三张UCM图融合,这样一共有 四种UCM图,每种UCM都可以得到4个list的proposals,一共有16个lists的proposals,作者收集zhexieproposals,然后对他们进行 overlap>0.95的筛选。然后再进行hole-filling,因为在之前的组合中可能某种proposals会有明显的hole inside。

最后,在得到一个完整的proposals set后,作者提取每个proposals 的 面积、周长、边界强度等2D基本特征,用这些特征组成向量来表示该proposal,然后训练随机森林回归器来对这些proposals排名。

作者提供了两个版本的UCM,Fast UCM 和Accurate UCM正如图所示, Fast UCM 最终会得到4个list的proposals, Accurate 会得到16个list的 proposals。

最后附上MCG简易流程图:

论文笔记(9):Multiscale Combinatorial Grouping的更多相关文章

  1. Multiscale Combinatorial Grouping 学习和理解源代码(一)

    目标探测由于所做的最新研究.因此,这一领域的一般阅读文章.发现这篇文章,效果是比较新的比较好.在如此仔细研究.贴纸和共享.下面已经发布若干个连续的,分别对论文和代码进行大致地介绍,最后依据自己的实验对 ...

  2. Video Frame Synthesis using Deep Voxel Flow 论文笔记

    Video Frame Synthesis using Deep Voxel Flow 论文笔记 arXiv 摘要:本文解决了模拟新的视频帧的问题,要么是现有视频帧之间的插值,要么是紧跟着他们的探索. ...

  3. 论文笔记:CNN经典结构1(AlexNet,ZFNet,OverFeat,VGG,GoogleNet,ResNet)

    前言 本文主要介绍2012-2015年的一些经典CNN结构,从AlexNet,ZFNet,OverFeat到VGG,GoogleNetv1-v4,ResNetv1-v2. 在论文笔记:CNN经典结构2 ...

  4. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

  5. 论文笔记之:Visual Tracking with Fully Convolutional Networks

    论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...

  6. Deep Learning论文笔记之(八)Deep Learning最新综述

    Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...

  7. Twitter 新一代流处理利器——Heron 论文笔记之Heron架构

    Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture ...

  8. Deep Learning论文笔记之(六)Multi-Stage多级架构分析

    Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些 ...

  9. Multimodal —— 看图说话(Image Caption)任务的论文笔记(一)评价指标和NIC模型

    看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图 ...

随机推荐

  1. Java经典编程题50道之四十

    将几个字符串排序(按英文字母的顺序). public class Example40 {    public static void main(String[] args) {        Stri ...

  2. Shell脚本报错:-bash: ./switch.sh: /bin/bash^M: bad interpreter: No such file or directory

    在学习shell中测试case参数命令代码如下 #!/bin/bash #switch测试 case $1 in     start)         echo 'start'     ;;      ...

  3. Java集合框架(五)—— Map、HashMap、Hashtable、Properties、SortedMap、TreeMap、WeakHashMap、IdentityHashMap、EnumMap

    Map Map用于保存具有映射关系的数据,因此Map集合里保存着两组值,一组值用于保存Map里的key,另一组值用于保存Map里的value,key和value都可以是任何引用类型的数据.Map的ke ...

  4. JAVA在不确定具体 Annotation 类型时,获得注解参数

       package com.lzw.demo; @SpringBootApplication public class DemoApplication { public static void ma ...

  5. yaf框架刚开始遇到的问题

    2016-10-17 17:54:13遇到的这个问题,这个问题算是比较综合性的问题,我也是查阅了很多的资料才大概明白的.这里就简单记录一下: 1.首先查看日志记录,结果如下: 根据错误日志:找寻到 ( ...

  6. ubuntu14.04 安装Jenkins

    wget -q -O - http://pkg.jenkins-ci.org/debian/jenkins-ci.org.key | sudo apt-key add - sudo sh -c 'ec ...

  7. ActiveMq笔记1-消息可靠性理论

    原博客:http://shift-alt-ctrl.iteye.com/blog/2020182 https://mp.weixin.qq.com/s/h74d6LtGB5M8VF0oLrXdCA 我 ...

  8. 网络基础Cisco路由交换四

    NAT及静态转换 概述(NAT:网络地址转化) 作用: 通过将内部网络的私有ip地址翻译成全球唯一的公网ip地址, 使内部网络可以连接到互联网等外部网络上. NATA的特性 优点: 节省公有合法ip地 ...

  9. vs2017密钥

    Enterprise: NJVYC-BMHX2-G77MM-4XJMR-6Q8QF Professional: KBJFW-NXHK6-W4WJM-CRMQB-G3CDH

  10. OkHttp拆解之调用流程图