【强连通分量+概率】Bzoj2438 杀人游戏
Description
一位冷血的杀手潜入 Na-wiat,并假装成平民。警察希望能在 N 个人里面,查出谁是杀手。
警察能够对每一个人进行查证,假如查证的对象是平民,他会告诉警察,他认识的人, 谁是杀手, 谁是平民。 假如查证的对象是杀手, 杀手将会把警察干掉。
现在警察掌握了每一个人认识谁。
每一个人都有可能是杀手,可看作他们是杀手的概率是相同的。
问:根据最优的情况,保证警察自身安全并知道谁是杀手的概率最大是多少?
Sulotion
最优的询问对象是,把强连通分量缩成一个点(问其中一个可推出所有,只要不第一次问就是罪犯可以一直安全),问那些入度为0的(这里相当于再把连通的缩为一个点)。
这样我们就得到了一些互不相干的点集,怎么计算概率呢?设点集大小为s1,s2,..
那么ans=(n-1)/n(第一次问不是罪犯)*[(s1-1/n-1)(集合在第一点集中)+((n-s1)/(n-1))*((n-s1-1)/(n-s1))*((s2-1)*(n-s1-1))(分别为,不在第一点集,第二次不问到罪犯,在第二点集的概率)+...]。
上面的式子分子分母可以连着消掉,然后得到ans=(n-tot)/n, tot为点集个数,也就是缩点后入度为0的点。
有一种特殊情况(连通题做一道一道特殊情况...)
如果有一个单独地点(大小为1&&入度为0&&不影响其它点入度是否为0),那么其他的都确定了,他自然也就可以肯定了,也不会对别的点有影响,不用算入tot。
Code
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=1e5+,maxm=3e5+; int pre[maxn],low[maxn],scc[maxn],clock,cnt;
int head[maxn],f[maxm],e[maxm],nxt[maxm],k;
int adde(int u,int v){
e[++k]=v,f[k]=u;
nxt[k]=head[u],head[u]=k;
}
int n,m,r[maxn],a[maxn],t;
int size[maxn],num[maxn]; int dfs(int u){
pre[u]=low[u]=++clock;
a[++t]=u;
for(int i=head[u];i;i=nxt[i]){
int v=e[i];
if(!pre[v]){
dfs(v);
low[u]=min(low[u],low[v]);
}
else if(!scc[v]){
low[u]=min(low[u],pre[v]);
}
}
if(low[u]==pre[u]){
num[++cnt]=u;
while(t){
scc[a[t]]=cnt;
size[cnt]++;
if(a[t--]==u) break;
}
}
} int pd(int x){
int u=num[x];
for(int i=head[u];i;i=nxt[i])
if(r[scc[e[i]]]==) return ;
return ;
} int main(){
scanf("%d%d",&n,&m);
int u,v;
for(int i=;i<=m;i++){
scanf("%d%d",&u,&v);
adde(u,v);
} for(int i=;i<=n;i++)
if(!pre[i]) dfs(i); for(int i=;i<=k;i++)
if(scc[f[i]]!=scc[e[i]]) r[scc[e[i]]]++; int ans=;
for(int i=;i<=cnt;i++)
if(!r[i]) ans++; for(int i=;i<=cnt;i++)
if(size[i]==&&!r[i]&&pd(i)){
ans--;
break;
} printf("%.6lf",(double)(n-ans)/n);
return ;
}
【强连通分量+概率】Bzoj2438 杀人游戏的更多相关文章
- bzoj2438 杀人游戏 Tarjan强联通
[bzoj2438][中山市选2011]杀人游戏 Description 一位冷血的杀手潜入 Na-wiat,并假装成平民.警察希望能在 N 个人里面,查出谁是杀手.警察能够对每一个人进行查证,假如查 ...
- [BZOJ2438]杀人游戏
Description 一位冷血的杀手潜入 Na-wiat,并假装成平民.警察希望能在 N 个人里面,查出谁是杀手.警察能够对每一个人 进行查证,假如查证的对象是平民,他会告诉警察,他认识的人, 谁是 ...
- [BZOJ2438]杀人游戏(缩点+特判)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2438 分析:如果出现了环,那么只要询问环上的一个人,那么环上其他的人的信息也就知道了, ...
- 【BZOJ-2438】杀人游戏 Tarjan + 缩点 + 概率
2438: [中山市选2011]杀人游戏 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1638 Solved: 433[Submit][Statu ...
- BZOJ_2438_[中山市选2011]杀人游戏 _强连通分量
BZOJ_2438_[中山市选2011]杀人游戏 _强连通分量 Description 一位冷血的杀手潜入 Na-wiat,并假装成平民.警察希望能在 N 个人里面,查出谁是杀手.警察能够对每一个人 ...
- 【BZOJ2438】[中山市选]杀人游戏 Tarjan+概率
[中山市选]杀人游戏 Tarjan+概率 题目描述 一位冷血的杀手潜入\(Na\)-\(wiat\),并假装成平民.警察希望能在\(N\)个人里面,查出谁是杀手.警察能够对每一个人进行查证,假如查 ...
- bzoj2438: [中山市选2011]杀人游戏(强联通+特判)
2438: [中山市选2011]杀人游戏 题目:传送门 简要题意: 给出n个点,m条有向边,进行最少的访问并且可以便利(n-1)个点,求这个方案成功的概率 题解: 一道非常好的题目! 题目要知道最大的 ...
- 【bzoj2438】[中山市选2011]杀人游戏 Tarjan
题目描述 一位冷血的杀手潜入 Na-wiat,并假装成平民.警察希望能在 N 个人里面,查出谁是杀手.警察能够对每一个人进行查证,假如查证的对象是平民,他会告诉警察,他认识的人, 谁是杀手, 谁是平民 ...
- BZOJ 2438:杀人游戏(tarjan+概率)
杀人游戏Description一位冷血的杀手潜入 Na-wiat,并假装成平民.警察希望能在 N 个人里面,查出谁是杀手. 警察能够对每一个人进行查证,假如查证的对象是平民,他会告诉警察,他认识的人, ...
随机推荐
- Java核心技术第四章——2.final 和 static
final实例域 实例域(对象的属性)可修饰为final.修饰为final后,在构建对象时必须初始化这个实例域.若没有在实例域进行初始化,那么必须在每个构造器内初始化这个实例域(否则会编译错误). 表 ...
- (function(){xxx})(); 写法解释
常见格式:(function() { /* code */ })(); 解释:包围函数(function(){})的第一对括号向脚本返回未命名的函数,随后一对空括号立即执行返回的未命名函数,括号内为匿 ...
- OC实现带弹跳动画按钮的界面控制器view
很多应用都有带弹跳动画发布界面,这里用一个 UIViewController 实现这种效果,外界只要 modal出不带动画这个控制器就可以实现 #import "BSPublishVC.h& ...
- db2 查新索引 主键 sql
1.查询主键 select * from sysibm.syskeycoluse where tbname='...' 2.查询索引 select * from sysibm.indexs where ...
- Mybatis 系列6
上篇系列5中 简单看了一下TypeHandler, 本次将结束对于mybatis的配置文件的学习, 本次涉及到剩下没提及到的几个节点的配置:objectFactory.databaseIdProvid ...
- 关于Android适配华为等带有底部虚拟按键的解决方案
http://blog.csdn.NET/a91694451/article/details/50469857 最近公司的项目里遇到了一个问题,就是最后适配的时候时候同事的华为手机时,由于底部带有虚拟 ...
- sudo pip install MySQLdb
安装数据库第三方包,报错: Could not find a version that satisfies the requirement MySQLdb (from versions: )No ma ...
- 一道面试题引发的思考(C#值类型和引用类型)
某年某月,笔者去面试招行的一个外包项目,辗转来到面试地点以后,面试官给了我一份试卷,试卷只有两道题目,其中一道是这样的: 阅读以下程序 class Program { struct Point { p ...
- Flask第三方工具组件介绍
flask-wtf组件flask-login组件flask-session组件flask-sqlalchemy组件flask-script组件flask-cache组件flask-assets组件fl ...
- L1正则化比L2正则化更易获得稀疏解的原因
我们知道L1正则化和L2正则化都可以用于降低过拟合的风险,但是L1正则化还会带来一个额外的好处:它比L2正则化更容易获得稀疏解,也就是说它求得的w权重向量具有更少的非零分量. 为了理解这一点我们看一个 ...