Solr相似性算法
Solr相似性算法
介绍
Solr 4及之前的版本默认采用VSM(向量空间模型)进行相似度的计算(或打分)。之后的版本,则采用Okapi BM25(一种二元独立模型的扩展),属于概率模型。
检索模型通常分为:
- 二元模型
- 向量空间模型(VSM)
- tfidf
- 基于关键词的检索
- 概率模型
- Okapi BM25
- 机器学习模型
similarity标签
<similarity>用于声明相似度计算模型,可以由用户定制。
示例如下:
<similarity class="solr.DFRSimilarityFactory">
<str name="basicModel">P</str>
<str name="afterEffect">L</str>
<str name="normalization">H2</str>
<float name="c">7</float>
</similarity>
该标签能够支持特定field type的相似度计算。
VSM
VSM的score公式如下:
score(q,d) = coord(q,d) · queryNorm(q) · ∑ ( tf(t in d) · idf(t)2 · t.getBoost() · norm(t,d) )
- tf(t in d ), = frequency½
- idf(t) = 1 +log(文档总数/(包含t的文档数+1))
- coord(q,d) 评分因子,。越多的查询项在一个文档中,说明些文档的匹配程序越高,比如说,查询"A B C",那么同时包含A/B/C3个词的文档 是3分,只包含A/B的文档是2分,coord可以在query中关掉的queryNorm(q)查询的标准查询,使不同查询之间可以比较
- t.getBoost() 和 norm(t,d) 都是提供的可编程接口,可以调整 field/文档/query项的权重
Okapi BM25
https://events.static.linuxfound.org/sites/events/files/slides/bm25.pdf
Score(q, d) =
∑ idf(t) · ( tf(t in d) · (k + 1) ) / ( tf(t in d) + k · (1 – b + b · |d| / avgdl )
t in q
Where:
t = term; d = document; q = query; i = index
tf(t in d) = numTermOccurrencesInDocument ½
idf(t) = 1 + log (numDocs / (docFreq + 1))
|d| = ∑ 1
t in d
avgdl = ( ∑ |d| ) / ( ∑ 1 ) )
d in i d in i
k = Free parameter. Usually ~1.2 to 2.0. Increases term frequency saturation point.
b = Free parameter. Usually ~0.75. Increases impact of document normalization.
Learning to Rank (LTR)
solr也是支持LTR的。
这一块要求有Machine Learning的基础。没有的话,就边看文档,边查吧。像我这样的,只能先跳过了(-_-)。
具体可以看文档:
https://lucene.apache.org/solr/guide/6_6/learning-to-rank.html
https://www.microsoft.com/en-us/research/project/mslr/
https://events.static.linuxfound.org/sites/events/files/slides/bm25.pdf
http://opensourceconnections.com/blog/2014/12/08/title-search-when-relevancy-is-only-skin-deep/
https://lucene.apache.org/solr/guide/6_6/relevance.html
Solr相似性算法的更多相关文章
- Elasticsearch mapping文档相似性算法
Elasticsearch allows you to configure a scoring algorithm or similarity per field. The similarityset ...
- 基于python语言使用余弦相似性算法进行文本相似度分析
编写此脚本的目的: 本人从事软件测试工作,近两年发现项目成员总会提出一些内容相似的问题,导致开发抱怨.一开始想搜索一下是否有此类工具能支持查重的工作,但并没找到,因此写了这个工具.通过从纸上谈兵到着手 ...
- ELK常用API使用方法
以下ELK系列文章参考自http://www.tianyiqingci.com/ 总目录: Monitor API ElasticSearch聚合分析API Elasticsearch信息检索API ...
- 026 Elastic----全文检索技术01---概述及windows安装
用户访问我们的首页,一般都会直接搜索来寻找自己想要购买的商品.而商品的数量非常多,而且分类繁杂.如何能正确的显示出用户想要的商品,并进行合理的过滤,尽快促成交易,是搜索系统要研究的核心.面对这样复杂的 ...
- ElasticSearch研究
前言 ES相关技术文档,很久之前看的,一门技术时间长不去研究就会容易忘了,应有些小伙伴的要求希望我做一期ES技术专栏,我就把以前看过的相关文档整理整理,给大家分享下. 1 ElasticSearc ...
- 搜索系统核心技术概述【1.5w字长文】
前排提示:本文为综述性文章,梳理搜索相关技术,如寻求前沿应用可简读或略过 搜索引擎介绍 搜索引擎(Search Engine),狭义来讲是基于软件技术开发的互联网数据查询系统,用户通过搜索引擎查询所需 ...
- OpneCv2.x 模块结构
转自:http://blog.csdn.net/huang9012/article/details/21811271 之前啃了不少OpenCV的官方文档,发现如果了解了一些OpenCV整体的模块架构后 ...
- 学习 opencv---(1) opencv3.1.0 组件结构浅析
本系列是根据 浅墨大神 的opencv系列而写的,,应该大部分内容会一样..如有侵权还请告知........... 开发环境:win7 + VS2013 + opencv3.1.0 至于OpenCV组 ...
- OpenCV整体的模块架构
之前啃了不少OpenCV的官方文档,发现如果了解了一些OpenCV整体的模块架构后,再重点学习自己感兴趣的部分的话,就会有一览众山小的感觉,于是,就决定写出这篇文章,作为启程OpenCV系列博文的第二 ...
随机推荐
- <h1>02_Linux学习_命令</h1>
帮助命令: xxx --help man xxx 列出当前目录下的目录和文件: ls ls -l ls --help ...
- Spring3.x企业应用开发实战-Spring+Hibernat架构分析
1: 持久层设计 采用Spring注解方式省略了大量Hibernate ORM配置文件: BaseDAO减少DAO层代码量,只需要编写非通用型的持久层方法: 持久层提供分页支持: Hibernate ...
- IntelliJ IDEA下Cannot resolve symbol XXX的解决方法
Idea导入maven项目后,运行能通过,但是打开一些类后,会出现Cannot resolve symbol XXX的错误提示. 考虑几种可能: 1.JDK版本,设置JDK和Maven的JDK版本. ...
- 详解URL的组成
很久很久以来,我对浏览器地址栏的信息了解的甚少,只知道域名(估计不知道是这么叫).唉...真是很汗颜啊!在软件专业都混了两年了,还是个菜鸟.说真的,有的时候觉得计算机这个领域真的真的有太多的东西要学了 ...
- python 定时服务模块
python定时任务使用方法如下: import sched shelder = sched.scheduler(time.time, time.sleep) shelder.enter(2, 0, ...
- Python教程大纲
缘起:最近想在部门推Python语言,写这个blog主要就是个教程大纲,之前先列出一些资源:Python历史:http://www.docin.com/p-53019548.html ...
- C程序员眼里的Python
注释 Phython的注释和C语言非常不同,第一种 #开头的注释,类似于C的//开头,而"""对 包围注释,类似于C的/* */,以及xml类的<!-- -- ...
- c# 语法要点速览
C# 变量类型 sbyte byte short ushort int uint long ulong float double decimal char bool string switch 默认不 ...
- [CVPR 2016] Weakly Supervised Deep Detection Networks论文笔记
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...
- java正则表达式验证金额
String reg_money = "\\d+(\\.\\d{1,2})?";// 金额正则,可以没有小数,小数最多不超过两位 Pattern pattern = Pattern ...