BZOJ_3210_花神的浇花集会_切比雪夫距离

Description

在花老师的指导下,每周4都有一个集会活动,俗称“浇水”活动。

具体浇水活动详情请见BZOJ3153

但这不是重点

花神出了好多题,每道题都有两个参考系数:代码难度和算法难度

花神为了准备浇花集会的题,必须找一道尽量适合所有人的题

现在花神知道每个人的代码能力x和算法能力y,一道题(代码难度X算法难度Y)对这个人的不适合度为    Max ( abs ( X – x ) , abs ( Y – y ) )

也就是说无论太难还是太简单都会导致题目不适合做(如果全按花神本人能力设题,绝对的全场爆0的节奏,太简单,则体现不出花神的实力)

当然不是每次都如花神所愿,不一定有一道题适合所有人,所以要使所有人的不合适度总和尽可能低

花神出了100001*100001道题,每道题的代码难度和算法难度都为0,1,2,3,……,100000

Input

第一行一个正整数N,表示花神有N个学生,花神要为这N个学生选一道题

接下来N行,每行两个空格隔开的整数x[i],y[i],表示这个学生的代码能力和算法能力

Output

一个整数,表示最小的不合适度总和

Sample Input

3
1 2
2 1
3 3

Sample Output

3

HINT

对于100%的数据,n<=100000,0<=x[i],y[i]<=100000

可以发现不合适度用的是切比雪夫距离。
于是把(x,y)变成(x-y,x+y)转化为曼哈顿距离求解。
如果是曼哈顿距离就可以把横纵坐标分开来求。
可以用数学方法证明排序后中位数最优。
但有可能答案(x,y)不能用原来坐标为整数的点表示。
出现这种情况需要用(x,y-1),(x,y+1),(x-1,y),(x+1,y)几个点带进去取个min。
 
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 100050
typedef long long ll;
int xx[N],yy[N],n;
ll ans;
int fabs(int x){return x>0?x:-x;}
ll solve(int x,int y) {
ll re=0;
int i;
for(i=1;i<=n;i++) re+=fabs(xx[i]-x)+fabs(yy[i]-y);
return re>>1;
}
int main() {
scanf("%d",&n);
int i,x,y;
for(i=1;i<=n;i++) {
scanf("%d%d",&xx[i],&yy[i]);
x=xx[i],y=yy[i];
xx[i]=x-y;
yy[i]=x+y;
}
sort(xx+1,xx+n+1);
sort(yy+1,yy+n+1);
x=xx[n+1>>1],y=yy[n+1>>1];
if(x%2==y%2) printf("%lld\n",solve(x,y));
else printf("%lld\n",min(solve(x-1,y),min(solve(x+1,y),min(solve(x,y-1),solve(x,y+1)))));
}

BZOJ_3210_花神的浇花集会_切比雪夫距离的更多相关文章

  1. 【BZOJ】【3210】花神的浇花集会

    曼哈顿距离与切比雪夫距离 QAQ蒟蒻并不知道切比雪夫距离是什么……并不会做这道题…… 去膜拜了PoPoQQQ大爷的题解: 题目大意:给定平面上的n个点,求一个点到这n个点的切比雪夫距离之和最小 与31 ...

  2. BZOJ 3210: 花神的浇花集会

    3210: 花神的浇花集会 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 577  Solved: 299[Submit][Status][Discus ...

  3. BZOJ3210: 花神的浇花集会

    3210: 花神的浇花集会 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 238  Solved: 119[Submit][Status] Descri ...

  4. 【bzoj3210】花神的浇花集会 旋转坐标系

    题目描述 在花老师的指导下,每周4都有一个集会活动,俗称“浇水”活动. 具体浇水活动详情请见BZOJ3153 但这不是重点 花神出了好多题,每道题都有两个参考系数:代码难度和算法难度 花神为了准备浇花 ...

  5. BZOJ3210: 花神的浇花集会(坐标系变换)

    题面 传送门 题解 坐标系变换把切比雪夫距离转化为曼哈顿距离 那么对于所有的\(x\)坐标中,肯定是中位数最优了,\(y\)坐标同理 然而有可能这个新的点不合法,也就是说不存在\((x+y,x-y)\ ...

  6. bzoj3210 花神的浇花集会 坐标

    题目大意:给定平面上的n个点,求一个点到这n个点的切比雪夫距离之和最小 与3170不同的是这次选择的点无需是n个点中的一个 首先将每个点(x,y)变为(x+y,x-y) 这样新点之间的曼哈顿距离的一半 ...

  7. 【bzoj3210】花神的浇花集会

    将(x,y)转化成(x+y,x-y)可以将切比雪夫距离转化成曼哈顿距离(自己推一推) A.B的切比雪夫距离就是A‘.B‘曼哈顿距离的一半. 那么可以将x.y分离处理,排序中位数即可. 注意如果最后选的 ...

  8. BZOJ 3210 花神的浇花集会 计算几何- -?

    题目大意:给定平面上的n个点,求一个点到这n个点的切比雪夫距离之和最小 与3170不同的是这次选择的点无需是n个点中的一个 首先将每一个点(x,y)变为(x+y,x-y) 这样新点之间的曼哈顿距离的一 ...

  9. BZOJ 3210: 花神的浇花集会 (切比雪夫距离)

    GXZlegend 切比雪夫和曼哈顿距离的互相转化看这里 传送门 CODE #include <bits/stdc++.h> using namespace std; #define LL ...

随机推荐

  1. 排序算法的C语言实现(下 线性时间排序:计数排序与基数排序)

    计数排序 计数排序是一种高效的线性排序. 它通过计算一个集合中元素出现的次数来确定集合如何排序.不同于插入排序.快速排序等基于元素比较的排序,计数排序是不需要进行元素比较的,而且它的运行效率要比效率为 ...

  2. Sending forms through JavaScript

    https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Sending_forms_through_JavaScript As in the ...

  3. jsoup 使用总结4--高级用法之 script js 脚本

    jsoup 使用总结4--高级用法之 script js 脚本 大部分时候,我们使用jsoup解析网页的时候,都是直接找到某一类元素,或者按某种selector查询:具体使用方法可以参考jsoup官网 ...

  4. Java并发-取消与关闭

    如果外部代码可以再某个操作正常完成之前就将其置入"完成"状态,那么这个操作就是可以取消的.取消的原因有:用户请求取消.有时间限制的操作.应用程序事件.错误和关闭等 中断 如果使用某 ...

  5. 文本分类学习(六) AdaBoost和SVM

    直接从特征提取,跳到了BoostSVM,是因为自己一直在写程序,分析垃圾文本,和思考文本分类用于识别垃圾文本的短处.自己学习文本分类就是为了识别垃圾文本. 中间的博客待自己研究透彻后再补上吧. 因为获 ...

  6. 在Linux上安装Python3

    1. 安装依赖环境 # yum -y install zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel readline- ...

  7. Java 核心卷学习笔记(一)

    Java基程序设计结构 1.注释 三种注释方式: // 注释单行 /* 内容 */ 注释单行 /** * 内容 */

  8. 对Python这门课程的理解。

    这门课程是现在热门,对之后的就业和利用的帮助还是很大的. 希望能学完整本书并且能学以致用,而不是单单只获得理论知识. 学完之后能用于数据库.大数据处理.图形编程等等

  9. Netty 笔记

    1.Netty 是一款异步的事件驱动的网络应用程序框架,支持快速地开发可维护的高性能的面向协议的服务器和客户端. 2.早期Java API 使用的阻塞函数 // 创建一个新的ServerSocket, ...

  10. activemq+Zookeper高可用集群方案配置

    在高并发.对稳定性要求极高的系统中,高可用的是必不可少的,当然ActiveMQ也有自己的集群方案.从ActiveMQ 5.9开始,ActiveMQ的集群实现方式取消了传统的Master-Slave方式 ...