斜率优化树形dp??

我们先将问题转化成在树上选K+1条互不相交路径,使其权值和最大。

然后我们考虑60分的dp,直接维护每个点子树内选了几条路径,然后该点和0/1/2条路径相连

然后我们会发现最后的答案关于割的边数是一个单峰的函数,这时候事情就变得明朗起来个p

我们考虑拿一条斜率为k的直线去切这个函数,切到的点是什么?是每选一条路径额外付出k点代价时的最优解,于是我们二分这个斜率,然后直接树形dp求最优解以及位置即可,因为每次的最优解一定是上次的最优解和儿子的最优解共同转移而来的,所以我们只需要对每个度数维护最优解和位置即可。然后我们就可以根据dp出的位置调整斜率,然后找到答案。

这不就是wqs二分吗。

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#define N 300500
#define pr pair<long long,int>
#define mk make_pair
#define fir first
#define sec second
#define inf 0x7fffffffffffffff
using namespace std;
int e=,head[N];
struct edge{
int v,w,next;
}ed[N<<];
void add(int u,int v,int w){
ed[e].v=v;ed[e].w=w;
ed[e].next=head[u];head[u]=e++;
}
int n,m,K;
long long ans;
pr f[N][],g[],mx;
void add(pr &a,pr b){if(b.fir>a.fir||(b.fir==a.fir&&b.sec<a.sec))a=b;}
void dfs(int x,int fa){
f[x][]=mk(,);f[x][]=mk(-m,);f[x][]=mk(-inf,);
for(int i=head[x];i;i=ed[i].next){
int v=ed[i].v;
if(v==fa)continue;
dfs(v,x);
g[]=f[x][];g[]=f[x][];g[]=f[x][];
mx=f[v][];add(mx,f[v][]);add(mx,f[v][]);
add(f[x][],mk(g[].fir+mx.fir,g[].sec+mx.sec));
add(f[x][],mk(g[].fir+mx.fir,g[].sec+mx.sec));
add(f[x][],mk(g[].fir+f[v][].fir+ed[i].w,g[].sec+f[v][].sec));
add(f[x][],mk(g[].fir+mx.fir,g[].sec+mx.sec));
add(f[x][],mk(g[].fir+f[v][].fir+ed[i].w+m,g[].sec+f[v][].sec-));
}
}
int main(){
scanf("%d%d",&n,&K);
for(int i=,u,v,w;i<n;i++){
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);add(v,u,w);
}
int l=-,r=,mid,fin;
while(l<=r){
m=mid=(l+r)>>;
dfs(,);
mx=f[][];add(mx,f[][]);add(mx,f[][]);
if(mx.sec<=K+)fin=mid,r=mid-;
else l=mid+;
}
m=fin;
dfs(,);
mx=f[][];add(mx,f[][]);add(mx,f[][]);
ans=mx.fir+1ll*(K+)*m;
printf("%lld\n",ans);
return ;
}

bzoj5252 [2018多省省队联测]林克卡特树的更多相关文章

  1. bzoj 5252: [2018多省省队联测]林克卡特树

    Description 小L 最近沉迷于塞尔达传说:荒野之息(The Legend of Zelda: Breath of The Wild)无法自拔,他尤其喜欢游戏中的迷你挑战. 游戏中有一个叫做& ...

  2. BZOJ5249: [2018多省省队联测]IIIDX(线段树 贪心)

    题意 题目链接 Sol 不难发现题目给出的是一个树,其中\(\frac{i}{K}\)是\(i\)的父亲节点 首先,当\(d_i\)互不相同时,一个显然的贪心策略就是优先给编号小的分配较大的权值.可以 ...

  3. BZOJ_5249_Luogu_P4364_[2018多省省队联测]_IIIDX_九省联考2018_JLOI2018_线段树

    BZOJ_5249_[2018多省省队联测]IIIDX_线段树 Description [题目背景] Osu听过没?那是Konano最喜欢的一款音乐游戏,而他的梦想就是有一天自己也能做个独特酷炫的音乐 ...

  4. 5249: [2018多省省队联测]IIIDX

    5249: [2018多省省队联测]IIIDX 链接 分析: 贪心. 将给定的权值从大到小排序,从第一个往后挨个赋值,考虑第i个位置可以赋值那些树.首先满足前面必须至少有siz[i]个权值没选,如果存 ...

  5. bzoj 5249 [2018多省省队联测] IIIDX

    bzoj 5249 [2018多省省队联测] IIIDX Link Solution 首先想到贪心,直接按照从大到小的顺序在后序遍历上一个个填 但是这样会有大问题,就是有相同的数的时候,会使答案不优 ...

  6. [八省联考2018]林克卡特树lct——WQS二分

    [八省联考2018]林克卡特树lct 一看这种题就不是lct... 除了直径好拿分,别的都难做. 所以必须转化 突破口在于:连“0”边 对于k=0,我们求直径 k=1,对于(p,q)一定是从p出发,走 ...

  7. [BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树

    [BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树 题意 给定一个 \(n\) 个点边带权的无根树, 要求切断其中恰好 \(k\) 条边再连 \(k\) 条边权为 \(0\) ...

  8. 【BZOJ5252】林克卡特树(动态规划,凸优化)

    [BZOJ5252]林克卡特树(动态规划,凸优化) 题面 BZOJ(交不了) 洛谷 题解 这个东西显然是随着断开的越来越多,收益增长速度渐渐放慢. 所以可以凸优化. 考虑一个和\(k\)相关的\(dp ...

  9. LuoguP4383 [八省联考2018]林克卡特树lct

    LuoguP4383 [八省联考2018]林克卡特树lct https://www.luogu.org/problemnew/show/P4383 分析: 题意等价于选择\(K\)条点不相交的链,使得 ...

随机推荐

  1. MLDS笔记:Generalization

    1 泛化能力 用VC维来衡量一个模型的表达能力,比如2维线性模型的VC维为3. 在图1-2中,随便给啥训练数据该model都能learn起来. 从理论上来看,当2个model在训练数据上表现一样时,为 ...

  2. mybatis源码解读(二)——构建Configuration对象

    Configuration 对象保存了所有mybatis的配置信息,主要包括: ①. mybatis-configuration.xml 基础配置文件 ②. mapper.xml 映射器配置文件 1. ...

  3. MAC OSX下用pip安装lxml时遇到xmlversion.h not found的解决办法

    http://blog.csdn.NET/wave_1102/article/details/37730589 今天在Mac下用pip安装lxml,总是报如下错误: etree_defs.h::: f ...

  4. PermutationTwo

    Description: Given a collection of numbers that might contain duplicates, return all possible unique ...

  5. RocketMQ源码 — 九、 RocketMQ延时消息

    上一节消息重试里面提到了重试的消息可以被延时消费,其实除此之外,用户发送的消息也可以指定延时时间(更准确的说是延时等级),然后在指定延时时间之后投递消息,然后被consumer消费.阿里云的ons还支 ...

  6. 前后台分离部署时,Niginx上的部署

    upstream bowenpay_backend { server 127.0.0.1:9002; } server { listen 80; server_name wx.bowenpay.com ...

  7. C#实现的HttpGet请求

    话不多说,代码贴上: /// <summary> /// HTTP Get请求 /// </summary> /// <param name="url" ...

  8. Selenium2Lib库之操作浏览器相关的关键字实战

    1.1  操作浏览器相关的关键字 Selenium2Lib提供了与浏览器交互的关键词 1.1.1 Open Browser关键字 按F5 查看Open Browser关键字的说明,如下图: Open ...

  9. Python_marshal模块操作二进制文件

    import marshal #导入模块 x1=30 #待序列化的对象 x2=5.0 x3=[1,2,3] x4=(4,5,6) x5={'a':1,'b':2,'c':3} x6={7,8,9} x ...

  10. 用ECMAScript4 ( ActionScript3) 实现Unity的热更新 -- 使用FairyGUI (二)

    上次讲解了FairyGUI的最简单的热更新办法,并对其中一个Demo进行了修改并做成了热更新的方式. 这次我们来一个更加复杂一些的情况:Emoji. FairyGUI的   Example 04 - ...