【bzoj 3601】一个人的数论 (莫比乌斯反演+伯努利数)

题解:
(吐槽:网上题解那个不严谨猜测真是没谁了……关键是还猜得辣么准……)
直接化简到求和那一段:
$f_{d}(n)=\sum_{t|n}\mu(t)t^{d}\sum_{i=1}^{\frac{n}{t}}i^{d}$
$设S_{d}(T)=\sum_{i=1}^{T}i^{d}$
那这个是什么呢?伯努利数(我会说我百度找到的吗……)
$s_{p}(T)=\sum_{i=1}^{p+1}\frac{(-1)^{p+1-i}C_{p+1}^{i}B_{p+1-i}}{p+1}n^{i}$(这个是百度那个公式化过来的)
然后$n^{i}$前面那一堆玩意就是网上题解的$a_{i}$。
接下来的化简我就不解释了……http://www.cnblogs.com/jianglangcaijin/p/4033399.html
然后我们只要求出C和B这题就没了。(貌似可以把d的范围再扩10倍233)
代码:
#include<cstdio>
using namespace std;
typedef long long ll;
const ll mod=1e9+;
const int N=;
inline ll read(){
ll s=,k=;char ch=getchar();
while(ch<''|ch>'') ch=='-'?k=-:,ch=getchar();
while(ch>&ch<='') s=s*+(ch^),ch=getchar();
return s*k;
}
inline ll powmod(ll a,ll b){
ll ans=;
if(b<)
return powmod(powmod(a,mod-),-b);
a%=mod;
while(b){
if(b&) ans=ans*a%mod;
b>>=;a=a*a%mod;
}return ans;
}
ll w,d;
ll p[N],pk[N];
ll tot=;
inline ll calc(int n){
ll t=powmod(tot,n);
for(int i=;i<=w;i++){
t=t*(1ll-powmod(p[i],d-n))%mod;
}
if(t<) t+=mod;
return t;
}
ll c[][],b[];
int main(){
d=read(),w=read();
ll n=w;
for(int i=;i<=n;i++){
p[i]=read(),pk[i]=read();
tot=tot*powmod(p[i],pk[i])%mod;
}
c[][]=;
for(int i=;i<=;i++){
c[i][]=;
for(int j=;j<=i;j++)
c[i][j]=(c[i-][j]+c[i-][j-])%mod;
}
b[]=;
for(int i=;i<=;i++){
for(int j=;j<i;j++)
b[i]=(b[i]+c[i+][j]*b[j])%mod;
b[i]=b[i]*(-powmod(i+,mod-))%mod+mod;
b[i]%=mod;
}
ll ans=;
ll inv=powmod(d+,mod-);
for(int i=;i<=d+;i++){
ll temp=((d+-i&)?-:)*c[d+][i]*b[d+-i]%mod*inv%mod;
if(temp==)
continue;
temp=temp*calc(i)%mod;
ans+=temp;
ans%=mod;
}
printf("%lld\n",(ans%mod+mod)%mod);
}
/*
3 2
2 1
5 1
*/
【bzoj 3601】一个人的数论 (莫比乌斯反演+伯努利数)的更多相关文章
- BZOJ 3601 一个人的数论 ——莫比乌斯反演 高斯消元
http://www.cnblogs.com/jianglangcaijin/p/4033399.html ——lych_cys 我还是太菜了,考虑一个函数的值得时候,首先考虑是否积性函数,不行的话就 ...
- 【bzoj 4176】 Lucas的数论 莫比乌斯反演(杜教筛)
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其 ...
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)
[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...
- [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)
[BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...
- 【BZOJ4176】Lucas的数论 莫比乌斯反演
[BZOJ4176]Lucas的数论 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)) ...
- BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)
手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Lu ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- 51Nod1675 序列变换 数论 莫比乌斯反演
原文http://www.cnblogs.com/zhouzhendong/p/8665675.html 题目传送门 - 51Nod1675 题意 给定序列$a,b$,让你求满足$\gcd(x,y)= ...
- UOJ#62. 【UR #5】怎样跑得更快 数论 莫比乌斯反演
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ62.html 题解 太久没更博客了,该拯救我的博客了. $$\sum_{1\leq j \leq n} \ ...
随机推荐
- javax.mail
摘抄 example: public static void sendEmail(ConfBean cBean, String filename, String filepath) { try { P ...
- easyui 在编辑状态下,动态修改其他列值。
首先是自定义了一个方法uodateColumn更新列值 /** *自定义的修改列值方法 */ $.extend($.fn.datagrid.methods, { updateColumn: funct ...
- 教你一步步发布一个开源库到 JCenter
今天想来分享下,如何一步步自己发布一个开源库到 JCenter 这方面的博客网上已经特别多了,所以本篇并不打算仅仅只是记录流程步骤而已,而是尽可能讲清楚,为什么需要有这个步骤,让大伙知其然的同时还知其 ...
- websocket通信 实现java模拟一个client与webclient通信
发文原由: 熟悉socket通信的同学,对于socket模拟server与client,实现相互通信, 或者使用websocket与java模拟的websocket服务器通信(比如一个聊天室),对于这 ...
- 自建Nuget服务器
前言 [PS:原文手打,转载说明出处,博客园] java有Maven,.net有Nuget,概念就不一一阐述了,自己百度.下面直接进入正题 搭建Nuget服务器 作案工具 工具:vs2017,Nuge ...
- ng-change事件中如何获取$event和如何在子元素事件中阻止调用父级元素事件(阻止事件冒泡)
闲聊: 今天小颖要实现一个当改变了select内容后弹出一个弹框,并且点击select父元素使得弹框消失,这就得用到阻止事件的冒泡了:$event.stopPropagation(),然而小颖发现,在 ...
- [Micropython]TPYBoard v10x NRF24L01无线通讯模块使用教程
1.实验目的: • 学习使用NRF24L01无线通讯模块 2.所需原器件: • TPYBoard v10X开发板两块 • NRF24L01无线通讯模块两个 • ...
- C#的一些小知识
一.Server.MapPath E:\MyProject\GisSystem\Json\jsonlist.aspx,GisSystem项目下有个Json文件夹,文件夹下有个jsonlist.aspx ...
- 程序员快递请查收,来自Python黑客大佬的一份DDOS攻击说明书!
DDoS攻击没有我们想象中的那么简单,并不是什么Python程序员都能够做到的. 若要知晓黑客利用DDOS攻击原理那么我们必须要知道是实行DDoS攻击比较难的原因是什么? 很简单的一句话概括:&quo ...
- QT窗体的小技巧
1.界面透明 setWindowOpacity(0.8);//构造函数中加此句,1为不透明,0为完全透明,0.8为80%不透明. 2.设置背景图片 QPixmap pixmap = QPixmap(& ...