题目描述

给定一个\(DAG\),问这个\(DAG\)有多少种拓扑序。

题解

我们首先需要设计一个能够比较好的转移的状态。

我们可以设\(dp[i][j]\)表示第i个点在当前\(dp\)的子图中拓扑排名为\(j\)的方案数。

至于\(dp\)的方式,我们发现只有\(n-1\)条边,所以我们并不用在\(DAG\)上\(dp\),直接在建出来的树上\(dp\)就好了。

转移的话,对于一条树边\(u->v\)我们先枚举转移之后的\(u\)的排名,再枚举当前\(v\)的排名,我们发现还需要枚举\(v\)的子树在\(u\)排名之前的点的个数\(x\)。

当\(u\)需要在\(v​\)之后时:

\[dp[u][j]=\sum_{k=1}^{k\leq size[v]}\sum_{x=k}^{x\leq size[v]}dp[u][j-x]*\binom{j-1}{x}*\binom{size[u]-(j-x)+size[v]-x}{size[v]-x}
\]

发现转移是一个后缀和的形式,可以用后缀和优化)。

当\(u\)需要在\(v\)之前时。

\[dp[u][j]=\sum_{k=1}^{k\leq size[v]}\sum_{x=1}^{x<k}dp[u][j-x]*\binom{j-1}{x}*\binom{size[u]-(j-x)+size[v]-x}{size[v]-x}
\]

转移是一个前缀和的形式,也可以用前缀和优化。

经过优化后,这个\(dp\)的复杂度可以优化到树形背包的复杂度,也就是\(O(n^2)\)。

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define N 1009
using namespace std;
typedef long long ll;
const int maxn=1000;
const int mod=1000000007;
char s[1];
ll ans,dp[N][N],now[N],c[N][N],g[N];
int tot,head[N],size[N],n;
inline ll rd(){
ll x=0;char c=getchar();bool f=0;
while(!isdigit(c)){if(c=='-')f=1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
return f?-x:x;
}
inline void MOD(ll &x){x=x>=mod?x-mod:x;}
struct edge{int n,to,l;}e[N<<1];
inline void add(int u,int v,int l){e[++tot].n=head[u];e[tot].to=v;head[u]=tot;e[tot].l=l;}
void dfs(int u,int fa){
size[u]=1;
dp[u][1]=1;
for(int i=head[u];i;i=e[i].n){
int v=e[i].to;if(v==fa)continue;
dfs(v,u);
if(e[i].l){
for(int j=1;j<=size[u]+size[v];++j){
int ma=min(size[v],j-1);
now[ma+1]=0;
for(int x=ma;x>=1;--x)
MOD(now[x]=now[x+1]+dp[u][j-x]*c[j-1][x]%mod*c[size[u]-(j-x)+size[v]-x][size[v]-x]%mod);
for(int k=1;k<=size[v];++k)MOD(g[j]+=dp[v][k]*now[k]%mod),now[k]=0;
}
}
else{
for(int j=1;j<=size[u]+size[v];++j){
int ma=min(size[v],j-1);
for(int x=0;x<=ma;++x)
MOD(now[x]=now[x-1]+dp[u][j-x]*c[j-1][x]%mod*c[size[u]-(j-x)+size[v]-x][size[v]-x]%mod);
for(int k=1;k<=size[v];++k)MOD(g[j]+=now[min(k-1,ma)]*dp[v][k]%mod);
for(int x=0;x<=ma;++x)now[x]=0;
}
}
size[u]+=size[v];
for(int j=1;j<=size[u];++j)dp[u][j]=g[j],g[j]=0;
}
}
int main(){ // 1 -> dayu 0 -> xiaoyu
int T=rd();
c[0][0]=1;
for(int i=1;i<=maxn;++i){
c[i][0]=1;
for(int j=1;j<=i;++j)MOD(c[i][j]=c[i-1][j]+c[i-1][j-1]);
}
while(T--){
n=rd();int u,v;
memset(dp,0,sizeof(dp));
memset(head,0,sizeof(head));tot=0;
for(int i=1;i<n;++i){
u=rd()+1;scanf("%s",s);v=rd()+1;
add(u,v,s[0]=='>');add(v,u,s[0]=='<');
}
ans=0;dfs(1,0);
for(int i=1;i<=n;++i)MOD(ans+=dp[1][i]);
printf("%lld\n",ans);
}
return 0;
}

HEOI2013SAO的更多相关文章

  1. BZOJ3167/BZOJ4824 HEOI2013SAO/CQOI2017老C的键盘(树形dp)

    前者是后者各方面的强化版. 容易想到设f[i][j]表示i子树中第j小的是i的方案数(即只考虑相对关系).比较麻烦的在于转移.考虑逐个合并子树.容易想到枚举根原来的排名和子树根原来的排名,算一发组合数 ...

  2. CodeChef LEMOVIE

    题意:给你n个数字(下标不同数值相同的数字应当被认为是不同的数字),有n!种排列方式.每种排列方式的价值定义为:第一次出现时比前面的所有数字都大的数值个数. 比如1,2,2,3这个排列中,1,2,3这 ...

随机推荐

  1. FTP方式部署Azure Web App

    创建部署凭据 在仪表盘中创建或重置部署凭据,在凭据中设置用户名和密码. 通过FTP方式打开Web根目录 在本地资源管理器中打开FTP地址(例如:ftp://cnws-prod-sha-001.ftp. ...

  2. SmartUpload工具包的中文乱码问题详解

    关于SmartUpload工具包的中文乱码问题,输出在服务端的中文显示是乱码,而英文数字,没有任何问题,我在网上看了其他人的问题和回答,让我觉得有道理,却又用不着,最后在多次试验中,终于找到了问题所在 ...

  3. java面试记录

    怎么确保一个集合不能被修改   ArrayList<String> list = new ArrayList<>();list.add("x");Colle ...

  4. 《PHP制作个人博客》之四:分类添加及前端导航数据用php动态调取

    大家好,今天我们接着上一节的全栈营销个人博客制作,上一节我们把博客的模板给加载运行起来.今天我们主要讲解后台模板分类的添加,后台导航的添加,及前台导航的动态调用.一个好的博客,导航很重要,导航就像你网 ...

  5. eclipse建立工作集管理项目

    废话不多说,直接上图 然后新建java working set管理项目,让自己的项目清晰明了

  6. Win32 Ime

    Win32 Ime API: ImmGetContext: 获取指定窗口的当前的输入上下文,然后再尝试访问上下文中的信息.应用程序应该定期使用这个功能获取窗口的当前的输入上下文.若hWnd参数为零,将 ...

  7. c++字节对齐编译器指令#pragma

    第一种 #pragma pack(push, 1) // 先把当前对齐设置压栈,再设置为1字节对齐 struct S { char a; ]; }; #pragma pack(pop) // 恢复先前 ...

  8. Webdriver之API详解(1)

    说明 Webdriver API详解,基于python3,unittest框架,driver版本和浏览器自行选择. 本内容需要对python3的unittest框架有一个简单的了解,这里不再赘述,不了 ...

  9. UOJ #449. 【集训队作业2018】喂鸽子

    UOJ #449. [集训队作业2018]喂鸽子 小Z是养鸽子的人.一天,小Z给鸽子们喂玉米吃.一共有n只鸽子,小Z每秒会等概率选择一只鸽子并给他一粒玉米.一只鸽子饱了当且仅当它吃了的玉米粒数量\(≥ ...

  10. mybatis insertUseGeneratedKeys 返回主键为null

    package tk.mybatis.mapper.common.special; import org.apache.ibatis.annotations.InsertProvider; impor ...