动态规划--Kin
动态规划:
1.最大子序列和
2.LIS最长递增子序列
3.LCS最长公共子序列
4.矩阵连乘
5.数字金字塔
1.最大子序列和
#include<iostream>
using namespace std;
int maxsub(int a[],int n)
{
int sum=0,b=0;
for(int i=0;i<=n;i++)
{
if(b>0) b+=a[i];
else b=a[i];
if(b>sum) sum=b;
}
return sum;
}
int main()
{
int a[6]={-2,11,-4,13,-5,-2};
cout<<maxsub(a,5)<<endl;
}
2.LIS最长递增子序列
#include<iostream>
#include<algorithm>
#define MAX_N 1010
#define INF 10010
using namespace std;
int main()
{
int i;
int n;
cin>>n;
int a[1010];
for(i=0;i<n;i++)
{
cin>>a[i];
}
int dp[MAX_N];
fill(dp,dp+n,INF);
for(i=0;i<n;i++)
{
*lower_bound(dp,dp+n,a[i])=a[i];
}
cout<<lower_bound(dp,dp+n,INF)-dp<<endl;
}
3.LCS最长公共子序列
#include<cstring>
#include<iostream>
#define MAXV 1000
using namespace std;
int dp[MAXV][MAXV];
char s1[MAXV],s2[MAXV];
bool issame(int a,int b)
{
return a==b?1:0;
}
int max(int a,int b,int c)
{
if(a>=b&&a>=c) return a;
if(b>=a&&b>=c) return b;
return c;
}
int main()
{
int len1,len2,i,j;
while(cin>>s1>>s2)
{
memset(dp,0,sizeof(dp));
len1=strlen(s1);
len2=strlen(s2);
for(i=1;i<=len1;i++)
{
for(j=1;j<=len2;j++)
{
dp[i][j]=max(dp[i-1][j-1]+issame(s1[i-1],s2[j-1]),dp[i-1][j],dp[i][j-1]);
}
}
cout<<dp[len1][len2]<<endl;
}
}
4.矩阵连乘,最少的乘法次数
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int dp[maxn][maxn],a[maxn];
int main()
{
int n;
cin>>n;
int i,j,k,len;
memset(dp,0,sizeof(dp));
//len是设置步长,也就是j减i的值
for(i=0;i<n;i++) cin>>a[i];
for(i=0;i<n-2;i++) dp[i][i+2]=a[i]*a[i+1]*a[i+2];
//如果只有三个数就直接乘起来
for(len=3;len<n;len++)
{
for(i=0;i+len<n;i++)
{
j=i+len;
for(k=i+1;k<j;k++)
{
if(dp[i][j]==0) dp[i][j]=dp[i][k]+dp[k][j]+a[i]*a[k]*a[j];
else dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+a[i]*a[k]*a[j]);
}
}
}
cout<<dp[0][n-1]<<endl;
}
5.数字金字塔
include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int triangle[110][110],dp[110][110];
int main()
{
int N;
cin>>N;
memset(dp,0,sizeof(dp));
memset(triangle,0,sizeof(triangle));
for(int i=1;i<=N;i++)
{
for(int j=1;j<=i;j++)
{
cin>>triangle[i][j];
}
}
for(int i=1;i<=N;i++)
{
dp[N][i]=triangle[N][i];
}
for(int i=N-1;i>=1;i--)
{
for(int j=1;j<=i;j++)
{
dp[i][j]=max(dp[i+1][j]+triangle[i][j],dp[i+1][j+1]+triangle[i][j]);
}
}
cout<<dp[1][1]<<endl;
}
树形DP
1.求解树的重心
2.求解删除树的重心后的最大子树
3.父节点和子节点不能同时选择的最大数值解
4.
动态规划--Kin的更多相关文章
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
- 简单动态规划-LeetCode198
题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...
- 动态规划 Dynamic Programming
March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
- C#动态规划查找两个字符串最大子串
//动态规划查找两个字符串最大子串 public static string lcs(string word1, string word2) { ...
- C#递归、动态规划计算斐波那契数列
//递归 public static long recurFib(int num) { if (num < 2) ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划
[BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...
- POJ 1163 The Triangle(简单动态规划)
http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS Memory Limit: 10000K Total Submissi ...
随机推荐
- emqtt 试用(三)mqtt 知识
一.概念 MQTT 协议客户端库: https://github.com/mqtt/mqtt.github.io/wiki/libraries 例如,mosquitto_sub/pub 命令行发布订阅 ...
- SpringCloud是否值得引入?
中小型互联网公司微服务实践-经验和教训 http://xujin.org/sc/sc-zq/#more Spring Cloud在国内中小型公司能用起来吗?https://mp.weixin.qq.c ...
- SpringCloud是什么?
参考链接: http://blog.csdn.net/forezp/article/details/70148833 一.概念定义 Spring Cloud是一个微服务框架,相比Dubbo ...
- MYSQL之库操作
一.系统数据库 information_schema :虚拟库,不占用磁盘空间,存储的是数据库启动后的一些参数,如用户表信息.列信息.权限信息.字符信息等 mysql:核心数据库,里面包含用户.权限. ...
- wpf的tab移动焦点只能在容器内部使用
设置 KeyboardNavigation.TabNavigation="Cycle" 即可
- 初学Java Web(9)——学生管理系统(简易版)总结
项目开始时间:2018年4月8日14:37:47 项目完成时间:2018年4月9日10:03:30 技术准备 这个项目是自己用于巩固 J2EE 相关知识的练手项目,非常简单,但是相关的功能却非常实用, ...
- Spring(2)——Spring IoC 详解
Spring IoC 概述 IoC:Inverse of Control(控制反转) 读作"反转控制",更好理解,不是什么技术,而是一种设计思想,就是将原本在程序中手动创建对象的控 ...
- 1025InnoDB log file 设置多大合适
转自 http://blog.csdn.net/langkeziju/article/details/51094289 数据库的东西,往往一个参数就牵涉N多知识点.所以简单的说一下.大家都知道inno ...
- 阿里云、腾讯云开通端口 telnet不通的原因
1.安全组是否已经开通相对应的端口: 阿里云:https://help.aliyun.com/document_detail/25471.html 腾讯云:http://bbs.qcloud.com/ ...
- 利用JS去做响应式布局
利用JS去做响应式布局 js动态改变布局方式 // 取浏览器可视区高宽 var lw = $(window).width(); var lh = $(window).height();// 页面加载完 ...