B. Case of Fugitive
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Andrewid the Android is a galaxy-famous detective. He is now chasing a criminal hiding on the planet Oxa-5, the planet almost fully covered with water.

The only dry land there is an archipelago of n narrow islands located in a row. For more comfort let's represent them as non-intersecting
segments on a straight line: island i has coordinates [li, ri],
besides, ri < li + 1 for 1 ≤ i ≤ n - 1.

To reach the goal, Andrewid needs to place a bridge between each pair of adjacent islands. A bridge of length a can
be placed between the i-th and the (i + 1)-th
islads, if there are such coordinates of x and y,
that li ≤ x ≤ rili + 1 ≤ y ≤ ri + 1 and y - x = a.

The detective was supplied with m bridges, each bridge can be used at most once. Help him determine whether the bridges he got are
enough to connect each pair of adjacent islands.

Input

The first line contains integers n (2 ≤ n ≤ 2·105)
and m (1 ≤ m ≤ 2·105)
— the number of islands and bridges.

Next n lines each contain two integers li and ri (1 ≤ li ≤ ri ≤ 1018)
— the coordinates of the island endpoints.

The last line contains m integer numbers a1, a2, ..., am (1 ≤ ai ≤ 1018)
— the lengths of the bridges that Andrewid got.

Output

If it is impossible to place a bridge between each pair of adjacent islands in the required manner, print on a single line "No" (without the quotes),
otherwise print in the first line "Yes" (without the quotes), and in the second line print n - 1 numbers b1, b2, ..., bn - 1,
which mean that between islands i and i + 1 there
must be used a bridge number bi.

If there are multiple correct answers, print any of them. Note that in this problem it is necessary to print "Yes" and "No" in
correct case.

Sample test(s)
input
4 4
1 4
7 8
9 10
12 14
4 5 3 8
output
Yes
2 3 1
input
2 2
11 14
17 18
2 9
output
No
input
2 1
1 1
1000000000000000000 1000000000000000000
999999999999999999
output
Yes
1
Note

In the first sample test you can, for example, place the second bridge between points 3 and 8, place the third bridge between points 7 and 10 and place the first bridge between points 10 and 14.

In the second sample test the first bridge is too short and the second bridge is too long, so the solution doesn't exist.


#include <bits/stdc++.h>
#define foreach(it,v) for(__typeof(v.begin()) it = v.begin(); it != v.end(); ++it)
using namespace std;
typedef long long ll;
const int maxn = 2e5 + 10;
#define x first
#define y second
typedef pair<ll,ll> pll;
typedef pair<pll,ll> plll;
typedef plll Seg;
typedef pll Bridge;
bool cmpSeg(const Seg & a, const Seg & b)
{
pll ta = a.x, tb = b.x;
if(ta.y == tb.y) return ta.x < tb.x;
return ta.y < tb.y;
}
Seg p[maxn];
Bridge a[maxn];
ll l[maxn],r[maxn],ans[maxn];
int main(int argc, char const *argv[])
{
ios_base::sync_with_stdio(false);cin.tie(0);
int n,m;
while(cin>>n>>m) {
for(int i = 1; i <= n; i++) {
cin>>l[i]>>r[i];
}
for(int i = 1; i < n; i++) {
p[i-1].x.x = l[i+1] - r[i];
p[i-1].x.y = r[i+1] - l[i];
p[i-1].y = i-1;
}
sort(p,p+n-1,cmpSeg);
set<Bridge>Q;
for(int i = 1; i <= m; i++) {
ll a,id = i;cin>>a;
Q.insert(make_pair(a,id));
}
set<Bridge>::iterator it;
bool ok = (m + 1 >= n);
for(int i = 0; i < n-1; i++) {
if(!ok) break;
it = Q.lower_bound(make_pair(p[i].x.x,0LL));
if(it==Q.end()||it->x > p[i].x.y) {
ok = false;
break;
}
ans[p[i].y] = it->y;
Q.erase(it);
}
if(ok) {
cout<<"Yes\n";
for(int i = 0; i < n-1; i++)cout<<ans[i]<<" ";
cout<<"\n";
}else cout<<"No\n";
}
return 0;
}

Codeforces Round #310 (Div. 1) B. Case of Fugitive(set二分)的更多相关文章

  1. Codeforces Round #310 (Div. 1) B. Case of Fugitive set

    B. Case of Fugitive Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/555/p ...

  2. 贪心/思维题 Codeforces Round #310 (Div. 2) C. Case of Matryoshkas

    题目传送门 /* 题意:套娃娃,可以套一个单独的娃娃,或者把最后面的娃娃取出,最后使得0-1-2-...-(n-1),问最少要几步 贪心/思维题:娃娃的状态:取出+套上(2),套上(1), 已套上(0 ...

  3. 构造 Codeforces Round #310 (Div. 2) B. Case of Fake Numbers

    题目传送门 /* 题意:n个数字转盘,刚开始每个转盘指向一个数字(0~n-1,逆时针排序),然后每一次转动,奇数的+1,偶数的-1,问多少次使第i个数字转盘指向i-1 构造:先求出使第1个指向0要多少 ...

  4. 找规律/贪心 Codeforces Round #310 (Div. 2) A. Case of the Zeros and Ones

    题目传送门 /* 找规律/贪心:ans = n - 01匹配的总数,水 */ #include <cstdio> #include <iostream> #include &l ...

  5. Codeforces Round #310 (Div. 1) C. Case of Chocolate set

    C. Case of Chocolate Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/555/ ...

  6. Codeforces Round #310 (Div. 2) B. Case of Fake Numbers 水题

    B. Case of Fake Numbers Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/5 ...

  7. Codeforces Round #310 (Div. 2) A. Case of the Zeros and Ones 水题

    A. Case of the Zeros and Ones Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/con ...

  8. Codeforces Round #310 (Div. 1) A. Case of Matryoshkas 水题

    C. String Manipulation 1.0 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contes ...

  9. Codeforces Round #310 (Div. 1) C. Case of Chocolate (线段树)

    题目地址:传送门 这题尽管是DIV1的C. . 可是挺简单的. .仅仅要用线段树分别维护一下横着和竖着的值就能够了,先离散化再维护. 每次查找最大的最小值<=tmp的点,能够直接在线段树里搜,也 ...

随机推荐

  1. 在linux下创建自定义service服务

    三个部分 这个脚本分为3个部分:[Unit] [Service] [Install]. Unit Unit表明该服务的描述,类型描述.我们称之为一个单元.比较典型的情况是单元A要求在单元B启动之后再启 ...

  2. 实用ExtJS教程100例-006:ExtJS中Window的用法示例

    在前面几个示例中,我们演示了MessageBox的各种用法,今天这篇文章将演示如何使用Window. 我们首先来创建一个窗口: var win = Ext.create("Ext.windo ...

  3. .NET零基础入门之01:开篇及CSharp程序、解决方案的结构

    一:为什么选择C# 每个人都有梦想,有些人的梦想就是:成为程序员.最课程(www.zuikc.com)的<零基础c#入门>是试图帮助我们实现这个梦想. 也许你要问:我基础很差怎么办?最课程 ...

  4. 深入理解多线程(四)—— Moniter的实现原理

    在深入理解多线程(一)——Synchronized的实现原理中介绍过关于Synchronize的实现原理,无论是同步方法还是同步代码块,无论是ACC_SYNCHRONIZED还是monitorente ...

  5. Cannot find snapshot in models/VGGNet/VOC0712/SSD_300x300

    错误描述: 执行 python examples/ssd/ssd_pascal.py 报错: Cannot find snapshot in models/VGGNet/VOC0712/SSD_300 ...

  6. 凝聚法层次聚类之ward linkage method

    凝聚法分层聚类中有一堆方法可以用来算两点(pair)之间的距离:欧式,欧式平方,manhattan等,还有一堆方法可以算类(cluster)与类之间的距离,什么single-linkage.compl ...

  7. springBoot注解大全JPA注解springMVC相关注解全局异常处理

    https://www.cnblogs.com/tanwei81/p/6814022.html 一.注解(annotations)列表 @SpringBootApplication:包含了@Compo ...

  8. 访问Oracle数据库的工具【unfinished】

    ylbtech-Oracle:访问Oracle数据库的工具 访问Oracle数据库的工具 1. SQL*PLUS返回顶部 1.0, 1.0.1, 之network\admin\tnsnames.ora ...

  9. NVelocity语法常用指令

    对变量的引用:$ [ ! ][ { ][ a..z, A..Z ][ a..z, A..Z, 0..9, -, _ ][ } ]. 在NVelocity中,对变量的引用都是以$开头加上变量名称.当使用 ...

  10. logistic回归算法及其matlib实现

    一般来说,回归不用在分类问题上,因为回归是连续型模型,而且受噪声影响比较大.如果非要使用回归算法,可以使用logistic回归. logistic回归本质上是线性回归,只是在特征到结果的映射中多加入了 ...