机器学习 Numpy库入门
2017-06-28 13:56:25
Numpy 提供了一个强大的N维数组对象ndarray,提供了线性代数,傅里叶变换和随机数生成等的基本功能,可以说Numpy是Scipy,Pandas等科学计算库的基础。
使用前需要引入numpy包,一般会给他起个别名为np。
import numpy as np
一、ndarray的元素类型
ndarray一个特点就是同构,就是说其中的元素类型是一致的。并且为了减少从存储空间和提高运行效率,ndarray的数据类型相较于python本身多了很多具体的类型。
所支持的数据类型包括整数、浮点数、复数、布尔值、字符串或是普通的 Python 对象(object)。

二、ndarray创建方法
(1)使用python自带的数据结构列表或者元组进行创建。
- x = np.array(list/tuple)
- x = np.array(list/tuple, dtype=np.float32) 当用户不指定dtype时,python编辑器会自动选择合适的数据类型
import numpy as np a=np.array([[1,2,3],[4,5,6]])
print(a)
用元组创建同理,也可以使用元组加列表的混合方式进行创建,不过,需要注意的是,这种创建需要同构,也就是首先数据类型要一致,其次每个元素中的数据个数也要一致,否则,称为异构,异构模型将不再适用numpy库中的库函数。
(2)使用Numpy中的库函数进行创建。
常用的函数:

#linspace默认情况下是全闭的,有一个参数可以进行控制,即endpoint,默认情况下是True
a=np.linspace(1,10,4)
b=np.linspace(1,10,4,endpoint=False)
print(a)
print(b)
#a=array([ 1. 4. 7. 10.])
#b=array([ 1. 3.25 5.5 7.75])
有一点需要注意的是这些默认函数,除了arange()已经规定了生成整数外,其他的默认生成的都是浮点型的数据。
(3)从csv文件中读取生成ndarray
np.savetxt(frame, array, fmt='%.18e', delimiter=None)
- frame : 文件、字符串或产生器,可以是.gz或.bz2的压缩文件
- array : 存入文件的数组
- fmt : 写入文件的格式,例如:%d %.2f %.18e
- delimiter : 分割字符串,默认是任何空格,如果是存成csv格式,所以最后一个参数需要写成‘,’
np.loadtxt(frame, dtype=np.float, delimiter=None, unpack=False)
- frame : 文件、字符串或产生器,可以是.gz或.bz2的压缩文件
- dtype : 数据类型,可选
- delimiter : 分割字符串,默认是任何空格
- unpack : 如果True,读入属性将分别写入不同变量
import numpy as np a=np.ones((3,2))
np.savetxt("e:/ee.csv",a,fmt="%d",delimiter=',')
b=np.loadtxt("e:/ee.csv",dtype=np.int,delimiter=',')
print(b)
三、narray的一些属性

这些是narray的成员数据值,可以直接使用成员访问符进行查看。
import numpy as np a = np.array([[1,2,3],[4,5,6],[7,8,9]])
print(a.shape)
print(a.size)
print(a.dtype)
print(a.ndim) # output:
# (3, 3)
#
# int32
#
机器学习 Numpy库入门的更多相关文章
- 数据分析与展示——NumPy库入门
这是我学习北京理工大学嵩天老师的<Python数据分析与展示>课程的笔记.嵩老师的课程重点突出.层次分明,在这里特别感谢嵩老师的精彩讲解. NumPy库入门 数据的维度 维度是一组数据的组 ...
- Python数据分析与展示(1)-数据分析之表示(1)-NumPy库入门
Numpy库入门 从一个数据到一组数据 维度:一组数据的组织形式 一维数据:由对等关系的有序或无序数据构成,采用线性方式组织. 可用类型:对应列表.数组和集合 不同点: 列表:数据类型可以不同 数组: ...
- 数据分析之Numpy库入门
1.列表与数组 在python的基础语言部分,我们并没有介绍数组类型,但是像C.Java等语言都是有数组类型的,那python中的列表和数组有何区别呢? 一维数据:都表示一组数据的有序结构 区别: 列 ...
- 机器学习 Matplotlib库入门
2017-07-21 15:22:05 Matplotlib库是一个优秀的python的数据可视化的第三方类库,其中的pyplot支持了类似matlab的图像输出操作.matplotlib.pyplo ...
- Python——NumPy库入门
1.数据的纬度 维度:一组数据的组织形式 1.1 一维数据 一维数据由对等关系的有序或无序数据构成,采用线性方式组织 ,对应列表.数组和集合等概念 列表:数据类型可以不同 ,如 3.1413, 'pi ...
- NumPy库入门
ndarray数组的元素类型 ndarray数组的创建 ndarray数组的操作 ndarray数组的运算
- 机器学习三剑客之Numpy库基本操作
NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Numpy内部解除了Python的PIL(全局解释器锁),运算效率极好,是大量机 ...
- 简单记录numpy库的某些基本功能
这里介绍python的一个库,numpy库,这个库是机器学习,数据分析最经常用到的库之一,也是利用python做数据必须用到的一个库,入门机器学习学的第一个python库就是它了. 先对其导入到pyt ...
- NumPy简单入门教程
# NumPy简单入门教程 NumPy是Python中的一个运算速度非常快的一个数学库,它非常重视数组.它允许你在Python中进行向量和矩阵计算,并且由于许多底层函数实际上是用C编写的,因此你可以体 ...
随机推荐
- GBDT理论知识总结
一. GBDT的经典paper:<Greedy Function Approximation:A Gradient Boosting Machine> Abstract Function ...
- php ci 报错 Object not found! The requested URL was not found on this server. If you entered the URL manually please check
Object not found! The requested URL was not found on this server. The link on the referring page see ...
- go learning
1. vim-go https://github.com/fatih/vim-go-tutorial curl -fLo ~/.vim/autoload/plug.vim --create-dirs ...
- 20145307陈俊达《网络对抗》Exp7 网络欺诈技术防范
20145307陈俊达<网络对抗>Exp7 网络欺诈技术防范 基础问题回答 什么是dns欺骗攻击! 利用dns spoof运行DNS欺骗,如果是请求解析某个域名,dnsspoof会让该域名 ...
- VC++ 利用CreateFile、ReadFile和WriteFile实现CopyFile
1. CreateFile:这是一个多功能的函数,可打开或创建以下对象,并返回可访问的句柄:控制台,通信资源,目录(只读打开),磁盘驱动器,文件,邮槽,管道. 参照:http://www.cppblo ...
- linux交叉编译gcc4.8.3
1.环境: Ubuntu 16.04 2.获取 wget mirrors.ustc.edu.cn/gnu/gcc/gcc-4.8.3/gcc-4.8.3.tar.bz2 3.解压 tar xvf gc ...
- 小Z的袜子(莫队分块)题解
小Z的袜子(hose) 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜 ...
- Springboot2.x 拦截器
一,单个拦截器,实现接口 HandlerInterceptor @Component public class MyInterceptor1 implements HandlerIntercepto ...
- 51nod 1050 循环数组最大子段和 单调队列优化DP
题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1050 这个呢,这个题之前 求一遍最大值 然后求一遍最小值 ...
- BZOJ 3555: [Ctsc2014]企鹅QQ
似乎大家全部都用的是hash?那我讲一个不用hash的做法吧. 首先考虑只有一位不同的是哪一位,那么这一位前面的位上的字符一定是全部相同,后面的字符也是全部相同.首先考虑后面的字符. 我们对n个串的反 ...