Multinoulli distribution
https://www.statlect.com/probability-distributions/multinoulli-distribution3
Multinoulli distribution
The Multinoulli distribution (sometimes also called categorical distribution) is a generalization of the Bernoulli distribution. If you perform an experiment that can have only two outcomes (either success or failure), then a random variable that takes value 1 in case of success and value 0 in case of failure is a Bernoulli random variable. If you perform an experiment that can have
outcomes and you denote by
a random variable that takes value 1 if you obtain the
-th outcome and 0 otherwise, then the random vector
defined as
is a Multinoulli random vector. In other words, when the
-th outcome is obtained, the
-th entry of the Multinoulli random vector
takes value
, while all other entries take value
.
In what follows the probabilities of the
possible outcomes will be denoted by
.
Definition
The distribution is characterized as follows.
Definition Let
be a
discrete random vector. Let the support of
be the set of
vectors having one entry equal to
and all other entries equal to
:
Let
, ...,
be
strictly positive numbers such that
We say that
has a Multinoulli distribution with probabilities
, ...,
if its joint probability mass function is
If you are puzzled by the above definition of the joint pmf, note that when
and
because the
-th outcome has been obtained, then all other entries are equal to
and
Expected value
The expected value of
is
where the
vector
is defined as follows:
Covariance matrix
The covariance matrix of
is
where
is a
matrix whose generic entry is
Joint moment generating function
The joint moment generating function of
is defined for any
:
Joint characteristic function
The joint characteristic function of
is
Multinoulli distribution的更多相关文章
- bernoulli, multinoulli distributions 讲解
bernoulli, multinoulli distributions 讲解 常用概率分布-Bernoulli 分布 & Multinoulli 分布 转自:迭代自己-19常用概率分布 ...
- Reading | 《DEEP LEARNING》
目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connec ...
- 【Deep Learning读书笔记】深度学习中的概率论
本文首发自公众号:RAIS,期待你的关注. 前言 本系列文章为 <Deep Learning> 读书笔记,可以参看原书一起阅读,效果更佳. 概率论 机器学习中,往往需要大量处理不确定量,或 ...
- 论文:Show, Attend and Tell: Neural Image Caption Generation with Visual Attention-阅读总结
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention-阅读总结 笔记不能简单的抄写文中的内容,得有自 ...
- PRML 概率分布
本文地址:https://www.cnblogs.com/faranten/p/15917369.html 转载请注明作者与出处 1 二元变量 1.1 伯努利分布与二项分布 考虑一个最基本的试验: ...
- 齐夫定律, Zipf's law,Zipfian distribution
齐夫定律(英语:Zipf's law,IPA英语发音:/ˈzɪf/)是由哈佛大学的语言学家乔治·金斯利·齐夫(George Kingsley Zipf)于1949年发表的实验定律. 它可以表述为: 在 ...
- CloudSim4.0报错NoClassDefFoundError,Caused by: java.lang.ClassNotFoundException: org.apache.commons.math3.distribution.UniformRealDistribution
今天下载了CloudSim 4.0的代码,运行其中自带的示例程序,结果有一部分运行错误: 原因是找不到org.apache.commons.math3.distribution.UniformReal ...
- Wishart distribution
Introduction In statistics, the Wishart distribution is generalization to multiple dimensions of the ...
- distribution 中一直在运行 waitfor delay @strdelaytime 语句
Replication 自动创建来一个 Job:Replication monitoring refresher for distribution,这个Agent执行一个sp: dbo.sp_repl ...
随机推荐
- oracle简单存储过程以及如何查看编译错误
oracle简单存储过程以及如何查看编译错误; CREATE OR REPLACE PROCEDURE procedure_test ISval VARCHAR2(200);BEGIN /* val ...
- 访问php文件显示源码
前天新装了个LAMP的环境,兴冲冲的clone下来代码,结果一访问乐子就大了,直接显现源码 面对这个问题,冥思苦想,四处找资料啊 让我改这改那的,最后终于找到症结 Ubuntu 16.04 系统 LA ...
- ubuntu下中文乱码解决方案(全)
转自 http://www.cnblogs.com/end/archive/2011/04/19/2021507.html 1.ibus输入法 Ubuntu 系统安装后已经自带了ibus输入法,在 ...
- Java与JS判断请求来是否来自移动端
Java public boolean JudgeIsMoblie(HttpServletRequest request) { boolean isMoblie = false; //String[] ...
- 极大既然估计和高斯分布推导最小二乘、LASSO、Ridge回归
最小二乘法可以从Cost/Loss function角度去想,这是统计(机器)学习里面一个重要概念,一般建立模型就是让loss function最小,而最小二乘法可以认为是 loss function ...
- POJ 1637 - Sightseeing tour - [最大流解决混合图欧拉回路]
嗯,这是我上一篇文章说的那本宝典的第二题,我只想说,真TM是本宝典……做的我又痛苦又激动……(我感觉ACM的日常尽在这张表情中了) 题目链接:http://poj.org/problem?id=163 ...
- ECNU 3263 - 丽娃河的狼人传说
一定要纪念一下第一道在比赛中自己做出来的贪心. 题目链接:http://acm.ecnu.edu.cn/problem/3263/ Time limit per test: 1.0 seconds T ...
- 11.21 CSS学习-下午
CSS框模型,看似一个盒子,封装周围的HTML元素,包括:边距.边框.填充和实际内容Margin:清除边框区域,没有背景色,完全透明Border:边框周围的填充和内容,边框是受到盒子的背景色影响Pad ...
- java重载和重载的区别
重载 public class A{ public void test(){} public void test(int num){} public void test(Str ...
- CodeForces - 156B Suspects 逻辑 线性 想法 题
题意:有1~N,n(1e5)个嫌疑人,有m个人说真话,每个人的陈述都形如X是凶手,或X不是凶手.现在给出n,m及n个陈述(以+x/-X表示)要求输出每个人说的话是true ,false or notd ...