Multinoulli distribution
https://www.statlect.com/probability-distributions/multinoulli-distribution3
Multinoulli distribution
The Multinoulli distribution (sometimes also called categorical distribution) is a generalization of the Bernoulli distribution. If you perform an experiment that can have only two outcomes (either success or failure), then a random variable that takes value 1 in case of success and value 0 in case of failure is a Bernoulli random variable. If you perform an experiment that can have
outcomes and you denote by
a random variable that takes value 1 if you obtain the
-th outcome and 0 otherwise, then the random vector
defined as
is a Multinoulli random vector. In other words, when the
-th outcome is obtained, the
-th entry of the Multinoulli random vector
takes value
, while all other entries take value
.
In what follows the probabilities of the
possible outcomes will be denoted by
.
Definition
The distribution is characterized as follows.
Definition Let
be a
discrete random vector. Let the support of
be the set of
vectors having one entry equal to
and all other entries equal to
:
Let
, ...,
be
strictly positive numbers such that
We say that
has a Multinoulli distribution with probabilities
, ...,
if its joint probability mass function is
If you are puzzled by the above definition of the joint pmf, note that when
and
because the
-th outcome has been obtained, then all other entries are equal to
and
Expected value
The expected value of
is
where the
vector
is defined as follows:
Covariance matrix
The covariance matrix of
is
where
is a
matrix whose generic entry is
Joint moment generating function
The joint moment generating function of
is defined for any
:
Joint characteristic function
The joint characteristic function of
is
Multinoulli distribution的更多相关文章
- bernoulli, multinoulli distributions 讲解
bernoulli, multinoulli distributions 讲解 常用概率分布-Bernoulli 分布 & Multinoulli 分布 转自:迭代自己-19常用概率分布 ...
- Reading | 《DEEP LEARNING》
目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connec ...
- 【Deep Learning读书笔记】深度学习中的概率论
本文首发自公众号:RAIS,期待你的关注. 前言 本系列文章为 <Deep Learning> 读书笔记,可以参看原书一起阅读,效果更佳. 概率论 机器学习中,往往需要大量处理不确定量,或 ...
- 论文:Show, Attend and Tell: Neural Image Caption Generation with Visual Attention-阅读总结
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention-阅读总结 笔记不能简单的抄写文中的内容,得有自 ...
- PRML 概率分布
本文地址:https://www.cnblogs.com/faranten/p/15917369.html 转载请注明作者与出处 1 二元变量 1.1 伯努利分布与二项分布 考虑一个最基本的试验: ...
- 齐夫定律, Zipf's law,Zipfian distribution
齐夫定律(英语:Zipf's law,IPA英语发音:/ˈzɪf/)是由哈佛大学的语言学家乔治·金斯利·齐夫(George Kingsley Zipf)于1949年发表的实验定律. 它可以表述为: 在 ...
- CloudSim4.0报错NoClassDefFoundError,Caused by: java.lang.ClassNotFoundException: org.apache.commons.math3.distribution.UniformRealDistribution
今天下载了CloudSim 4.0的代码,运行其中自带的示例程序,结果有一部分运行错误: 原因是找不到org.apache.commons.math3.distribution.UniformReal ...
- Wishart distribution
Introduction In statistics, the Wishart distribution is generalization to multiple dimensions of the ...
- distribution 中一直在运行 waitfor delay @strdelaytime 语句
Replication 自动创建来一个 Job:Replication monitoring refresher for distribution,这个Agent执行一个sp: dbo.sp_repl ...
随机推荐
- webp图片优化
根据对目前国内浏览器占比与 WebP 的兼容性分析,大约有 50% 以上的国内用户可以直接体验到 WebP,如果你的网站以图片为主,或者你的产品基于 Chromium 内核,建议体验尝试.假如你打算在 ...
- redis -clock_gettime问题
/home/wm/redis-/deps/jemalloc/src/nstime.c:: undefined reference to `clock_gettime' 这个错误 解决思路如下 .查找实 ...
- Spark2 生存分析Survival regression
在spark.ml中,实现了加速失效时间(AFT)模型,这是一个用于检查数据的参数生存回归模型. 它描述了生存时间对数的模型,因此它通常被称为生存分析的对数线性模型. 不同于为相同目的设计的比例风险模 ...
- Centos6.5安装mysql 5.7
1.在官网下载安装包:https://dev.mysql.com/downloads/mysql/5.7.html#downloads mysql-5.7.10-linux-glibc2.5-x86_ ...
- vue报错 Uncaught TypeError: Cannot read property ‘children ’ of null
Uncaught TypeError: Cannot read property ‘children ’ of null ratings未渲染完毕,就跳走goods了,取消默认跳转,即可
- CentOS 6U7分区大于2TB的磁盘以及挂载大于16TB分区磁盘的解决方案
一.内容介绍1.问题描述1).问题一 CentOS 6.x 在格式化大于16TB的ext4分区时,会提示如下错误: mke2fs 1.41.12 (17-May-2010)mkfs.ext4: Siz ...
- CodeForces 832B Petya and Exam
B. Petya and Exam time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- canvas API笔记
HTML5添加的最受欢迎的功能就是<canvas>元素,这个元素负责在页面的指定区域通过js动态地在这个区域绘制图形. <canvas> 由几组API构成. 准备: <c ...
- 2018牛客网暑期ACM多校训练营(第二场) J - farm - [随机数哈希+二维树状数组]
题目链接:https://www.nowcoder.com/acm/contest/140/J 时间限制:C/C++ 4秒,其他语言8秒 空间限制:C/C++ 262144K,其他语言524288K ...
- Effective Objective-C 笔记之熟悉OC
1.在一个类的头文件中尽量少引用其他头文件 如果Person.h 引入了EmployeePerson.h,而后续又有其他类如Human.h又引入了Person.h, 那么EmployeePerson. ...