Multinoulli distribution
https://www.statlect.com/probability-distributions/multinoulli-distribution3
Multinoulli distribution
The Multinoulli distribution (sometimes also called categorical distribution) is a generalization of the Bernoulli distribution. If you perform an experiment that can have only two outcomes (either success or failure), then a random variable that takes value 1 in case of success and value 0 in case of failure is a Bernoulli random variable. If you perform an experiment that can have
outcomes and you denote by
a random variable that takes value 1 if you obtain the
-th outcome and 0 otherwise, then the random vector
defined as
is a Multinoulli random vector. In other words, when the
-th outcome is obtained, the
-th entry of the Multinoulli random vector
takes value
, while all other entries take value
.
In what follows the probabilities of the
possible outcomes will be denoted by
.
Definition
The distribution is characterized as follows.
Definition Let
be a
discrete random vector. Let the support of
be the set of
vectors having one entry equal to
and all other entries equal to
:
Let
, ...,
be
strictly positive numbers such that
We say that
has a Multinoulli distribution with probabilities
, ...,
if its joint probability mass function is
If you are puzzled by the above definition of the joint pmf, note that when
and
because the
-th outcome has been obtained, then all other entries are equal to
and
Expected value
The expected value of
is
where the
vector
is defined as follows:
Covariance matrix
The covariance matrix of
is
where
is a
matrix whose generic entry is
Joint moment generating function
The joint moment generating function of
is defined for any
:
Joint characteristic function
The joint characteristic function of
is
Multinoulli distribution的更多相关文章
- bernoulli, multinoulli distributions 讲解
bernoulli, multinoulli distributions 讲解 常用概率分布-Bernoulli 分布 & Multinoulli 分布 转自:迭代自己-19常用概率分布 ...
- Reading | 《DEEP LEARNING》
目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connec ...
- 【Deep Learning读书笔记】深度学习中的概率论
本文首发自公众号:RAIS,期待你的关注. 前言 本系列文章为 <Deep Learning> 读书笔记,可以参看原书一起阅读,效果更佳. 概率论 机器学习中,往往需要大量处理不确定量,或 ...
- 论文:Show, Attend and Tell: Neural Image Caption Generation with Visual Attention-阅读总结
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention-阅读总结 笔记不能简单的抄写文中的内容,得有自 ...
- PRML 概率分布
本文地址:https://www.cnblogs.com/faranten/p/15917369.html 转载请注明作者与出处 1 二元变量 1.1 伯努利分布与二项分布 考虑一个最基本的试验: ...
- 齐夫定律, Zipf's law,Zipfian distribution
齐夫定律(英语:Zipf's law,IPA英语发音:/ˈzɪf/)是由哈佛大学的语言学家乔治·金斯利·齐夫(George Kingsley Zipf)于1949年发表的实验定律. 它可以表述为: 在 ...
- CloudSim4.0报错NoClassDefFoundError,Caused by: java.lang.ClassNotFoundException: org.apache.commons.math3.distribution.UniformRealDistribution
今天下载了CloudSim 4.0的代码,运行其中自带的示例程序,结果有一部分运行错误: 原因是找不到org.apache.commons.math3.distribution.UniformReal ...
- Wishart distribution
Introduction In statistics, the Wishart distribution is generalization to multiple dimensions of the ...
- distribution 中一直在运行 waitfor delay @strdelaytime 语句
Replication 自动创建来一个 Job:Replication monitoring refresher for distribution,这个Agent执行一个sp: dbo.sp_repl ...
随机推荐
- 【STL】vector的insert方法详解
#include<vector> #include<iostream> using namespace std; int main() { vector<int> ...
- Implicit conversion from enumeration type 'enum CGImageAlphaInfo' to different enumeration type 'CGBitmapinfo' (aka) 'enum CGBitmapInfo')
The constants for specifying the alpha channel information are declared with the CGImageAlphaInfo ty ...
- FPGA时序约束的几种方法 (转)
FPGA时序约束的几种方法 对自己的设计的实现方式越了解,对自己的设计的时序要求越了解,对目标器件的资源分布和结构越了解,对EDA工具执行约束的效果越了解,那么对设计的时序约束目标就会越清晰,相应地, ...
- html to openxml
Html to OpenXml How to start ? Create a new console application. Add a reference to DocumentFormat.O ...
- 【CF840E】In a Trap 分块
[CF840E]In a Trap 题意:一棵n个点的树,第i个点权值为ai,q次询问,每次给定u,v(u是v的祖先),求对于所有在u-v上的点i,$a_i\ \mathrm{xor}\ dis(i, ...
- C++ vs Python向量运算速度评测
本文的起源来自最近一个让我非常不爽的事. 我最近在改一个开源RNN工具包currennt(http://sourceforge.net/projects/currennt/),想用它实现RNNLM功能 ...
- 7.22 python线程(3)
2018-7-22 10:28:29 回来啦! 6.条件 # !/usr/bin/env python # !--*--coding:utf-8 --*-- # !@Time :2018/7/20 1 ...
- 不错的Spring学习笔记(转)
Spring学习笔记(1)----简单的实例 --------------------------------- 首先需要准备Spring包,可从官方网站上下载. 下载解压后,必须的两个包是s ...
- mount --bind 的妙用
在固件开发过程中常常遇到这样的情况:为测试某个新功能,必需修改某个系统文件.而这个文件在只读文件系统上(总不能为一个小小的测试就重刷固件吧),或者是虽然文件可写,但是自己对这个改动没有把握,不愿意 ...
- iOS常用基础框架
一,简述 1.1,IOS操作系统的层次架构 iOS为应用程序开发提供了许多可使用的框架,并构成IOS操作系统的层次架构,分为四层,从上到下依次为:Cocoa Touch Layer( ...