Outlier Detection
1)正态分布数据,飘出95%的可能是异常值.变量var正态标准化,|var|<=1.96的可能是异常值,further chk needed!large sample better.
对于偏态分布的数据(histogram chk),这个方法貌似不是很好.
2)Boxplot Method
稳健,无正态分布假设.
箱线图判断异常值的标准以四分位数和四分位距为基础.
四分位距(QR, Quartile range):上四分位数与下四分位数之间的间距,即上四分位数减去下四分位数.
F代表中位数,QR代表四分位距.
在Q3+1.5QR(四分位距)和Q1-1.5QR处画两条与中位线一样的线段,这两条线段为异常值截断点,称其为内限.
在F(中位数)+3QR和F-3QR处画两条线段,称其为外限.
内限外限之间为弱异常值(Mild Outliers),外限之外为强异常值(Extreme Outliers)
http://blog.sina.com.cn/s/blog_7dc56e6e0100qzra.html
3)格拉布斯(Grubbs)检验法和狄克逊(Dixon)检验法
Grubbs' test for outliers
normality assumption
sample size greater than 6
the maximum normed residual test
http://en.wikipedia.org/wiki/Grubbs'_test_for_outliers
Dixon's Q test
once in a data set
arrange the data in order of increasing values and calculate Q as
defined: Q=gap/raneg, Where gap is the absolute difference between
the outlier in question and the closest number to it. if calculated
Q > table Q then reject the questionable
point.
http://en.wikipedia.org/wiki/Dixon's_Q_test
Outlier Detection的更多相关文章
- 【论文阅读】A practical algorithm for distributed clustering and outlier detection
文章提出了一种分布式聚类的算法,这是第一个有理论保障的考虑离群点的分布式聚类算法(文章里自己说的).与之前的算法对比有以下四个优点: 1.耗时短O(max{k,logn}*n), 2.传递信息规模小: ...
- Envoy:离群点检测 outlier detection
outlier detection 在异常检测领域中,常常需要决定新观察的点是否属于与现有观察点相同的分布(则它称为inlier),或者被认为是不同的(称为outlier).离群是异常的数据,但是不一 ...
- Machine Learning - XV. Anomaly Detection异常检測 (Week 9)
http://blog.csdn.net/pipisorry/article/details/44783647 机器学习Machine Learning - Andrew NG courses学习笔记 ...
- 异常值处理outlier
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...
- Abnormal Detection(异常检测)和 Supervised Learning(有监督训练)在异常检测上的应用初探
1. 异常检测 VS 监督学习 0x1:异常检测算法和监督学习算法的对比 总结来讲: . 在异常检测中,异常点是少之又少,大部分是正常样本,异常只是相对小概率事件 . 异常点的特征表现非常不集中,即异 ...
- Anomaly Detection
数据集中的异常数据通常被成为异常点.离群点或孤立点等,典型特征是这些数据的特征或规则与大多数数据不一致,呈现出“异常”的特点,而检测这些数据的方法被称为异常检测. 异常数据根据原始数据集的不同可以分为 ...
- One Class SVM 对于样本不均衡处理思路——拿出白样本建模,算出outlier,然后用黑去检验效果
One Class SVM 是指你的training data 只有一类positive (或者negative)的data, 而没有另外的一类.在这时,你需要learn的实际上你training d ...
- NLP&数据挖掘基础知识
Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Er ...
- {ICIP2014}{收录论文列表}
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...
随机推荐
- shell截取字符串的一些简单方法
一.使用${} 1.${var##*/}该命令的作用是去掉变量var从左边算起的最后一个'/'字符及其左边的内容,返回从左边算起的最后一个'/'(不含该字符)的右边的内容.使用例子及结果如下:
- Unity3D Shader描边效果
Shader "Custom/RimColor" { Properties { _MainTex ("Base (RGB)", 2D) = "whit ...
- mysql5.6.35的安装脚本
#!/bin/bashfunction help() ( cat << EOF $ [-h] $ -c <CharaterSet> EOF exit ) ----------- ...
- CentOS上传下载查看命令
之前往CentOS中上传都用ftp软件,这里介绍一种另外的上传下载方式,两个命令轻松搞定.这两个命令目前只针对Xshell和SecureCRT等远程终端软件才支持,并且还会有时间的限制.大概30秒不上 ...
- github相关资料记录
github官方配ssh api:https://help.github.com/articles/generating-ssh-keys 简书hexo静态博客搭建:http://www.jiansh ...
- Hive show
CREATE TABLE page_view(viewTime INT, userid BIGINT,p_date timestamp, page_url STRING, referrer_url v ...
- (面试)Hash表算法十道海量数据处理面试题
Hash表算法处理海量数据处理面试题 主要针对遇到的海量数据处理问题进行分析,参考互联网上的面试题及相关处理方法,归纳为三种问题 (1)数据量大,内存小情况处理方式(分而治之+Hash映射) (2)判 ...
- Python:列表生成式
List Comprehensions #列表生成式:Python内置的非常简单却强大的可以用来创建list的生成式. #生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可 ...
- SQL中的四种语言DDL,DML,DCL,TCL
1.DDL(Data Definition Language)数据库定义语言statements are used to define the database structure or schema ...
- array string mysql IN LIKE
$ids = $_POST['ids']; $str = implode(',',$ids); $str = '('.$str.')'; $db_region->region_del($str) ...