在编写RNN程序时,一个很常见的函数就是sequence_loss_by_example

loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example(logits_list, targets_list, weights_list, average_across_timesteps)

这个函数在contrib中的legacy(遗产)中,可见这个函数不是tensorflow支持的官方函数。

import numpy as np
import tensorflow as tf def sequence_loss_by_example(logits,
targets,
weights,
average_across_timesteps=True,
softmax_loss_function=None,
name=None):
"""Weighted cross-entropy loss for a sequence of logits (per example). Args:
logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
targets: List of 1D batch-sized int32 Tensors of the same length as logits.
weights: List of 1D batch-sized float-Tensors of the same length as logits.
average_across_timesteps: If set, divide the returned cost by the total
label weight.
softmax_loss_function: Function (labels, logits) -> loss-batch
to be used instead of the standard softmax (the default if this is None).
**Note that to avoid confusion, it is required for the function to accept
named arguments.**
name: Optional name for this operation, default: "sequence_loss_by_example". Returns:
1D batch-sized float Tensor: The log-perplexity for each sequence. Raises:
ValueError: If len(logits) is different from len(targets) or len(weights).
"""
# 此三者都是列表,长度都应该相同
if len(targets) != len(logits) or len(weights) != len(logits):
raise ValueError("Lengths of logits, weights, and targets must be the same "
"%d, %d, %d." % (len(logits), len(weights), len(targets)))
with tf.name_scope(name, "sequence_loss_by_example",
logits + targets + weights):
log_perp_list = []
# 计算每个时间片的损失
for logit, target, weight in zip(logits, targets, weights):
if softmax_loss_function is None:
# 默认使用sparse
target = tf.reshape(target, [-1])
crossent = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=target, logits=logit)
else:
crossent = softmax_loss_function(labels=target, logits=logit)
log_perp_list.append(crossent * weight)
# 把各个时间片的损失加起来
log_perps = tf.add_n(log_perp_list)
# 对各个时间片的损失求平均数
if average_across_timesteps:
total_size = tf.add_n(weights)
total_size += 1e-12 # Just to avoid division by 0 for all-0 weights.
log_perps /= total_size
return log_perps """
考虑many2many形式的RNN用法,每次输入一个就会得到一个输出
这些输出需要计算平均损失,我们可以指定:
* 每个样本的权重
* 每个时间片的权重
"""
sample_count = 4
target_count = 3
frame_count = 2
# 各个时间片我的答案
logits = [tf.random_uniform((sample_count, target_count)) for i in range(frame_count)]
# 各个时间片的真正答案
targets = [tf.constant(np.random.randint(0, target_count, (sample_count,))) for i in range(frame_count)]
# 每个时间片,每个样本的权重。利用weights我们可以指定时间片权重和样本权重
weights = [tf.ones((sample_count,), dtype=tf.float32) * (i + 1) for i in range(frame_count)]
loss1 = sequence_loss_by_example(logits, targets, weights, average_across_timesteps=True)
loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example(logits, targets, weights, True)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
x, y, = sess.run([loss, loss1])
print(x)
print(y)
print(x.shape, y.shape)

这个函数非常有用,tensorflow.nn中的sparse_softmax_cross_entropy无法指定样本的权重,这个函数可以。

使用时,只需要传入一个时间片即可。如果各个样本权重都为1,最后得到的结果跟sparse_softmax_cross_entropy得到的结果是一样的。

tensorflow中的sequence_loss_by_example的更多相关文章

  1. 在TensorFlow中基于lstm构建分词系统笔记

    在TensorFlow中基于lstm构建分词系统笔记(一) https://www.jianshu.com/p/ccb805b9f014 前言 我打算基于lstm构建一个分词系统,通过这个例子来学习下 ...

  2. Tensorflow中的padding操作

    转载请注明出处:http://www.cnblogs.com/willnote/p/6746668.html 图示说明 用一个3x3的网格在一个28x28的图像上做切片并移动 移动到边缘上的时候,如果 ...

  3. CNN中的卷积核及TensorFlow中卷积的各种实现

    声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了"应该"二字 首先,通俗说一下,CNN ...

  4. python/numpy/tensorflow中,对矩阵行列操作,下标是怎么回事儿?

    Python中的list/tuple,numpy中的ndarrray与tensorflow中的tensor. 用python中list/tuple理解,仅仅是从内存角度理解一个序列数据,而非数学中标量 ...

  5. [翻译] Tensorflow中name scope和variable scope的区别是什么

    翻译自:https://stackoverflow.com/questions/35919020/whats-the-difference-of-name-scope-and-a-variable-s ...

  6. SSD:TensorFlow中的单次多重检测器

    SSD:TensorFlow中的单次多重检测器 SSD Notebook 包含 SSD TensorFlow 的最小示例. 很快,就检测出了两个主要步骤:在图像上运行SSD网络,并使用通用算法(top ...

  7. 在 TensorFlow 中实现文本分类的卷积神经网络

    在TensorFlow中实现文本分类的卷积神经网络 Github提供了完整的代码: https://github.com/dennybritz/cnn-text-classification-tf 在 ...

  8. [开发技巧]·TensorFlow中numpy与tensor数据相互转化

    [开发技巧]·TensorFlow中numpy与tensor数据相互转化 个人主页–> https://xiaosongshine.github.io/ - 问题描述 在我们使用TensorFl ...

  9. TensorFlow中的变量和常量

    1.TensorFlow中的变量和常量介绍 TensorFlow中的变量: import tensorflow as tf state = tf.Variable(0,name='counter') ...

随机推荐

  1. Sum Root to Leaf Numbers leetcode java

    题目: Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a nu ...

  2. Struts2之server端验证

    声明:在我的教程中有些东西,没有提及到.不是我不知道,而是在我个人来看对你们不是太重要的知识点.你们在看课本时有了解到即可.我不会面面俱到的都给你们提及.我写博文的目的是把我这一年的开发经验通过学习s ...

  3. gson ajax 数字精度丢失

    ajax传输的json,gson会发生丢失,long > 15的时候会丢失0 解决方案:直接把属性为long的属性自动加上双引号成为js的字符串,这样就不会发生丢失了,ajax自动识别为字符串. ...

  4. windows 环境变量

    1.考虑下面的需求,进入cmd之后,我就想执行mysql客户端命令,而这需要转到mysql安装目录,找到mysql可执行文件,在这个目录下执行mysql命令.这样太麻烦,有没有好的解决办法? 2.使用 ...

  5. OpenWRT下实现Portal认证(WEB认证)

    首先简单介绍一下什么是Portal认证,Portal认证,通常也会叫Web认证,未认证用户上网时,设备强制用户登录到特定站点,用户可以免费访问其中的服务.当用户需要使用互联网中的其它信息时,必须在门户 ...

  6. java interface 默认值

    /* * Hibernate, Relational Persistence for Idiomatic Java * * Copyright (c) 2010, Red Hat Inc. or th ...

  7. maven 下载源码downloadsources

    mvn eclipse:eclipse -Ddownloadsources=true  -Ddownloadjavadocs=true

  8. 微信小程序 - scroll-into-view(提示)

    scroll-view的参数scroll-into-view适用于索引以及回到顶部 .详情见官方文档scroll-view: 点击下载:scroll-into-view示例

  9. Hibernate的配置中,c3p0连接池相关配置

    一.配置c3p0 1.导入 hibernate-c3po连接池包,Maven地址是:http://mvnrepository.com/artifact/org.hibernate/hibernate- ...

  10. kendoUpload

    <style> .upfile { display: inline-block; width: %; } .upfile li { display: inline-block; width ...