题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3781

Time Limit: 2 Seconds      Memory Limit: 65536 KB

Leo has a grid with N rows and M columns. All cells are painted with either black or white initially.

Two cells A and B are called connected if they share an edge and they are in the same color, or there exists a cell C connected to both A and B.

Leo wants to paint the grid with the same color. He can make it done in multiple steps. At each step Leo can choose a cell and flip the color (from black to white or from white to black) of all cells connected to it. Leo wants to know the minimum number of steps he needs to make all cells in the same color.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains two integers N and M (1 <= NM <= 40). Then N lines follow. Each line contains a string with N characters. Each character is either 'X' (black) or 'O' (white) indicates the initial color of the cells.

Output

For each test case, output the minimum steps needed to make all cells in the same color.

Sample Input

2
2 2
OX
OX
3 3
XOX
OXO
XOX

Sample Output

1
2

Hint

For the second sample, one optimal solution is:

Step 1. flip (2, 2)

XOX
OOO
XOX

Step 2. flip (1, 2)

XXX
XXX
XXX

题意:

两个方格字符一样并且相邻的即为判断为连通,且连通具有传递性;

每次翻转,可以也必须翻转一个连通块的颜色(X→O,O→X),问至少翻转几次可以使得给出的图变得所有方格颜色都一样。

题解:

若把所有连通块缩成一个点看待,那么整个n*m的grid可以变成一个无向二分图;

那么,我们在这个二分图上任取一个点作为出发点,假设这个点在集合L,它沿着一条边走到另一个集合R内的另一个点;

这种沿着一条边走一步的动作,可以看做起点代表的那个连通块翻转了颜色,变成了与终点代表的连通块一样的颜色;

更形象的,相当于该条边的起点并入了终点;

那么我们一直走,就相当于不断地翻转颜色,直到遍历完全部二分图上所有点,就相当于把整个grid都翻成了一个颜色。

那么,翻转次数相当于什么呢?显然就是走过的边数。

显然,我们如果规定好起点,令其深度d[st]=0,那么bfs不断一层层地求其相邻点的d[],

直到全部搜索完,所有d[i]中的最大值,就是以st为起点需要翻转几次才能颜色全部一样。

另外,枚举起点为从(1,1)到(n,m)进行一次dfs就能把所有连通块缩成点,并且建立起一个二分图,这个正确性是可以想见的。

同时,存图方面,本题会卡邻接矩阵,需要使用邻接表。

AC代码:

#include<bits/stdc++.h>
using namespace std; const int INF=0x3f3f3f3f;
const int maxn=;
const int maxm=; int n,m;
char grid[maxn][maxm]; //存储grid
int id[maxn][maxm]; struct Edge{
int u,v;
Edge(int u,int v){this->u=u,this->v=v;}
};
vector<Edge> E;
vector<int> G[maxn*maxm];
void init(int n)
{
E.clear();
for(int i=;i<=n;i++) G[i].clear();
}
void addedge(int u,int v)
{
E.push_back(Edge(u,v));
E.push_back(Edge(v,u));
int _size=E.size();
G[u].push_back(_size-);
G[v].push_back(_size-);
} int dr[]={,,,-};
int dc[]={,,-,}; void dfs(int nowr,int nowc,int i)
{
id[nowr][nowc]=i;
for(int k=;k<;k++)
{
int nxtr=nowr+dr[k];
int nxtc=nowc+dc[k]; if(!(<=nxtr && nxtr<=n && <=nxtc && nxtc<=m)) continue;
if(grid[nowr][nowc]==grid[nxtr][nxtc])
{
if(id[nxtr][nxtc]==) dfs(nxtr,nxtc,i);
}
else
{
if(id[nxtr][nxtc]!=)
{
int idnow=id[nowr][nowc], idnxt=id[nxtr][nxtc];
addedge(idnow,idnxt);
}
}
}
} int d[maxn*maxm];
bool vis[maxn*maxm];
int bfs(int st,int cnt)
{
memset(vis,,sizeof(vis)); int res=;
queue<int> q;
q.push(st);
vis[st]=;
d[st]=;
while(!q.empty())
{
int u=q.front();q.pop();
res=max(d[u],res);
for(int i=,_size=G[u].size();i<_size;i++)
{
int v=E[G[u][i]].v;
if(vis[v]) continue;
d[v]=d[u]+;
q.push(v);
vis[v]=;
}
} return res;
} int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%s",grid[i]+); //连通块编号 - O(n*m)
init(m*n);
memset(id,,sizeof(id));
int cnt=;
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
if(id[i][j]!=) continue;
dfs(i,j,++cnt);
}
} //for(int i=1;i<=cnt;i++) {for(int j=1;j<=cnt;j++) printf("%d ",edge[i][j]); printf("\n");} //SPFA求单源最短路 - O((n*m)^2)
int ans=INF;
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
ans=min(bfs(id[i][j],cnt),ans);
}
} printf("%d\n",ans);
}
}

ZOJ 3781 - Paint the Grid Reloaded - [DFS连通块缩点建图+BFS求深度][第11届浙江省赛F题]的更多相关文章

  1. ZOJ 3781 Paint the Grid Reloaded(BFS+缩点思想)

    Paint the Grid Reloaded Time Limit: 2 Seconds      Memory Limit: 65536 KB Leo has a grid with N rows ...

  2. ZOJ 3781 Paint the Grid Reloaded(DFS连通块缩点+BFS求最短路)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5268 题目大意:字符一样并且相邻的即为连通.每次可翻转一个连通块X( ...

  3. ZOJ 3781 Paint the Grid Reloaded

    枚举,$BFS$,连通块缩点. 可以枚举一开始染哪个位置,然后逐层往外染色,看最多需要多少操作次数,也就是算最短距离.连通块缩点之后可以保证是一个黑白相间的图,且每条边的费用均为$1$,$BFS$即可 ...

  4. ZOJ - 3781 Paint the Grid Reloaded 题解

    题目大意: 给一个n*m的X O构成的格子,对一个点操作可以使与它相连通的所有一样颜色的格子翻转颜色(X—>O或O—>X),问给定的矩阵最少操作多少次可以全部变成一样的颜色. 思路: 1. ...

  5. ZOJ 3781 Paint the Grid Reloaded 连通块

    LINK:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3781 题意:n*m只由OX组成的矩阵,可以选择某一连通块变成另一 ...

  6. ZOJ 3781 Paint the Grid Reloaded(BFS)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3781 Leo has a grid with N rows an ...

  7. ZOJ 3780 - Paint the Grid Again - [模拟][第11届浙江省赛E题]

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3780 Time Limit: 2 Seconds      Me ...

  8. ZOJ 3777 - Problem Arrangement - [状压DP][第11届浙江省赛B题]

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3777 Time Limit: 2 Seconds      Me ...

  9. 图-用DFS求连通块- UVa 1103和用BFS求最短路-UVa816。

    这道题目甚长, 代码也是甚长, 但是思路却不是太难.然而有好多代码实现的细节, 确是十分的巧妙. 对代码阅读能力, 代码理解能力, 代码实现能力, 代码实现技巧, DFS方法都大有裨益, 敬请有兴趣者 ...

随机推荐

  1. Android刮刮卡效果

                         不多说,直接上代码: package com.example.test; import android.app.Activity; import androi ...

  2. Tomcat------如何配置域名和80端口

    1.打开Tomcat的默认安装路径下的Service.xml文件 路径:C:\Program Files\Apache Software Foundation\Tomcat 8.0\conf\Serv ...

  3. C++ mysql 乱码

    C++读mysql数据库中的中文显示出来的是乱码 在连接到数据库后加上这么一句 mysql_query(pMYSQL, "SET NAMES GB2312"); 或者 mysql_ ...

  4. yii 前端js动态添加验证规则

    在使用 activeForm 生成表单及验证时,默认是按照 model 里的 rules 生成js验证,model 验证在加载完页面后生效,不可修改,如果需要扩展.动态验证,需要使用js来配合 直接上 ...

  5. Sharepoint文档的CAML分页及相关筛选记录

    写这篇文章的初衷是因为其他的业务系统要调用sharepoint的文档库信息,使其他的系统也可以获取sharepoint文档库的信息列表.在这个过程中尝试过用linq to sharepoint来获取文 ...

  6. SpringMVC系列之主要组件

    一.组件说明 DispatcherServlet:前端控制器,用于请求到达前端控制器,由它调用其他组件处理用户的请求. HandlerMapping:处理器映射器,负责根据用户请求找到Handler( ...

  7. cp自动创建层级结构的例子

    一个拷贝命令的技巧,不仅拷贝文件,而且拷贝目录结构.记录下来. *拷贝的时候,自动创建参数中源文件的路径:#cp --parents parentdir1/parentdir2/sourcefile ...

  8. struts.xml文件中配置tiles.xml

    Apache Tiles是一个JavaEE应用的页面布局框架.Tiles框架提供了一种模板机制,可以为某一类页面定义一个通用的模板,该模板定义了页面的整体布局.布局由可以复用的多个块组成,每个页面可以 ...

  9. <转>机器学习系列(9)_机器学习算法一览(附Python和R代码)

    转自http://blog.csdn.net/han_xiaoyang/article/details/51191386 – 谷歌的无人车和机器人得到了很多关注,但我们真正的未来却在于能够使电脑变得更 ...

  10. python错误 ImportError: No module named setuptools 解决方法[转]

    在python运行过程中出现如下错误: python错误:ImportError: No module named setuptools这句错误提示的表面意思是:没有setuptools的模块,说明p ...