模拟估算器:scikit-learn Estimator
转载:https://www.toutiao.com/i6606193174010397187/
当一个数据科学项目刚刚开始时,关键是要尽可能快地走向一个最小可行的产品(MVP)。这个MVP将包含最终数据产品的所有组件,但只具有最低限度的功能。在项目达到这一点之后,迭代和改进已经存在的Pipeline将会更快。由于一个经过训练的机器学习模型需要花费大量的时间和精力来创建,因此在数据管道中放置一个模拟模型将允许数据工程师在数据科学家完成最终模型的训练之前开始他们的工作。创建MockBinaryClassifier充当二元预测模型的类。该模型遵循以下简单规则:如果第一个特征的值小于或等于0,则返回0级,如果第一个特征大于0则返回1级:
import numpy as np
from sklearn.base import BaseEstimator
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import MinMaxScaler class MockBinaryClassifier(BaseEstimator): def __init__(self):
self.n_classes_ = 2
self.classes_ = np.array([0, 1]) def fit(self,features:np.ndarray,target:np.ndarray,sample_weight:np.ndarray=None): return self def predict(self,features:np.ndarray): return np.where(features[:,0]>0,1,0)
MockBinaryClassifier继承sklearn.base.BaseEstimator,这意味着它可以在任何使用scikit-learn estimator 的地方使用;fit函数本质上是一个无操作。既然我们知道如何对实例进行分类,就不需要考虑任何历史数据。
下面的Python代码展示了MockBinaryClassifier如何在scikit-learn pipeline中工作:
test_feature = np.array([[0], [0.5], [3], [-1]]) train_feature = np.zeros_like(test_feature)
train_target = np.zeros_like(test_feature) pipe = Pipeline([("scale",MinMaxScaler()),
("mock",MockBinaryClassifier())]) pred = pipe.fit(train_feature,train_target).predict(test_feature) print(pred)
使用启发式方法创建模拟模型是在开发周期中消除瓶颈的一种极好的方法。它允许数据工程师和数据科学家并行工作,而不需要工程师等待真正的机器学习模型被建立。它还允许数据科学家使用他们将用于构建真实模型的精确代码来设置基准性能标准。
模拟估算器:scikit-learn Estimator的更多相关文章
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- [TensorFlow 团队] TensorFlow 数据集和估算器介绍
发布人:TensorFlow 团队 原文链接:http://developers.googleblog.cn/2017/09/tensorflow.html TensorFlow 1.3 引入了两个重 ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- Scikit Learn
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.
- 以下三种下载方式有什么不同?如何用python模拟下载器下载?
问题始于一个链接https://i1.pixiv.net/img-zip-...这个链接在浏览器打开,会直接下载一个不完整的zip文件 但是,使用下载器下载却是完整文件 而当我尝试使用python下载 ...
- sk-learn 选择正确的估算器
选择正确的估算器 解决机器学习问题最困难的部分通常是为工作找到正确的估算器. 不同的估计器更适合于不同类型的数据和不同的问题. 下面的流程图旨在为用户提供一些关于如何处理有关哪些估算器尝试数据的问题的 ...
- Query意图分析:记一次完整的机器学习过程(scikit learn library学习笔记)
所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的 ...
随机推荐
- PAT 列车厢调度 (25分)(栈和容器的简单应用)
1 ====== <--移动方向 / 3 ===== \ 2 ====== -->移动方向 大家或许在某些数据结构教材上见到过“列车厢调度问题”(当然没见过也不要紧).今天,我们就来实际操 ...
- IOS 作业项目(1) 关灯游戏 (百行代码搞定)
1,准备工作,既然要开关灯,就需要确定灯的灯的颜色状态 首先想到的是扩展UIColor
- 如何在win10(64位系统)上安装apache服务器
今天装了Apache服务器,下面是我总结的方法: 一,准备软件 1.64位的apache版本 传送门:http://www.apachelounge.com/download/ 2.VC11运行库 下 ...
- 【opencv基础】detectmultiscale函数详解
前言 简单的人脸检测程序可以直接基于opencv的函数库进行实现,本文介绍一下detectMultiScale函数. 函数简介 opencv2人脸检测使用的是detectMultiScale函数,可以 ...
- linux-推荐两款好用的录屏软件
前言 测试程序过程中需要看运行效果如何,可以使用录屏软件进行回放. 软件安装 添加源:sudo add-apt-repository ppa:maarten-baert/simplescreenrec ...
- linux中文件上传下载
windows篇 linux文件下载到windows sz命令 登录到linux服务器使用 sz log.log 命令,弹出对话框选择下载文件的目录,点击确定即可. windows文件上传到linux ...
- 【洛谷P1462】【二分+堆优化dij】
题目描述 在艾泽拉斯,有n个城市.编号为1,2,3,...,n. 城市之间有m条双向的公路,连接着两个城市,从某个城市到另一个城市,会遭到联盟的攻击,进而损失一定的血量. 每次经过一个城市,都会被收取 ...
- LeetCode-Microsoft-Remove K Digits
Given a non-negative integer num represented as a string, remove k digits from the number so that th ...
- hibernate 1-1(具体解释)
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/qilixiang012/article/details/27870343 域模型 关系数据模型: 依 ...
- 02.将uboot,kernel,rootfs下载到开发板上
转载,侵删 将uboot,kernel,rootfs下载到开发板上 1.为什么要下载 所谓下载,也称烧录,部署. 1.1.什么是u-boot Hi3518EV200 单板的 Bootloader 采用 ...