【强化学习】python 实现 q-learning 迷宫通用模板
本文作者:hhh5460
本文地址:https://www.cnblogs.com/hhh5460/p/10145797.html
0.说明
这里提供了二维迷宫问题的一个比较通用的模板,拿到后需要修改的地方非常少。
对于任意的二维迷宫的 class Agent,只需修改三个地方:MAZE_R, MAZE_R, rewards,其他的不要动!如下所示:
class Agent(object):
'''个体类'''
MAZE_R = 6 # 迷宫行数
MAZE_C = 6 # 迷宫列数 def __init__(self, alpha=0.1, gamma=0.9):
'''初始化'''
# ... ...
self.rewards = [0,-10,0, 0, 0, 0,
0,-10,0, 0,-10, 0,
0,-10,0,-10, 0, 0,
0,-10,0,-10, 0, 0,
0,-10,0,-10, 1, 0,
0, 0,0,-10, 0,10,] # 奖励集。出口奖励10,陷阱奖励-10,元宝奖励1
# ... ...
1.完整代码
import pandas as pd
import random
import time
import pickle
import pathlib
import os
import tkinter as tk '''
6*6 的迷宫:
-------------------------------------------
| 入口 | 陷阱 | | | | |
-------------------------------------------
| | 陷阱 | | | 陷阱 | |
-------------------------------------------
| | 陷阱 | | 陷阱 | | |
-------------------------------------------
| | 陷阱 | | 陷阱 | | |
-------------------------------------------
| | 陷阱 | | 陷阱 | 元宝 | |
-------------------------------------------
| | | | 陷阱 | | 出口 |
------------------------------------------- 作者:hhh5460
时间:20181219
地点:Tai Zi Miao
''' class Maze(tk.Tk):
'''环境类(GUI)'''
UNIT = 40 # pixels
MAZE_R = 6 # grid row
MAZE_C = 6 # grid column def __init__(self):
'''初始化'''
super().__init__()
self.title('迷宫')
h = self.MAZE_R * self.UNIT
w = self.MAZE_C * self.UNIT
self.geometry('{0}x{1}'.format(h, w)) #窗口大小
self.canvas = tk.Canvas(self, bg='white', height=h, width=w)
# 画网格
for c in range(1, self.MAZE_C):
self.canvas.create_line(c * self.UNIT, 0, c * self.UNIT, h)
for r in range(1, self.MAZE_R):
self.canvas.create_line(0, r * self.UNIT, w, r * self.UNIT)
# 画陷阱
self._draw_rect(1, 0, 'black') # 在1列、0行处,下同
self._draw_rect(1, 1, 'black')
self._draw_rect(1, 2, 'black')
self._draw_rect(1, 3, 'black')
self._draw_rect(1, 4, 'black')
self._draw_rect(3, 2, 'black')
self._draw_rect(3, 3, 'black')
self._draw_rect(3, 4, 'black')
self._draw_rect(3, 5, 'black')
self._draw_rect(4, 1, 'black')
# 画奖励
self._draw_rect(4, 4, 'yellow')
# 画玩家(保存!!)
self.rect = self._draw_rect(0, 0, 'red')
self.canvas.pack() # 显示画作! def _draw_rect(self, x, y, color):
'''画矩形, x,y表示横,竖第几个格子'''
padding = 5 # 内边距5px,参见CSS
coor = [self.UNIT * x + padding, self.UNIT * y + padding, self.UNIT * (x+1) - padding, self.UNIT * (y+1) - padding]
return self.canvas.create_rectangle(*coor, fill = color) def move_agent_to(self, state, step_time=0.01):
'''移动玩家到新位置,根据传入的状态'''
coor_old = self.canvas.coords(self.rect) # 形如[5.0, 5.0, 35.0, 35.0](第一个格子左上、右下坐标)
x, y = state % 6, state // 6 #横竖第几个格子
padding = 5 # 内边距5px,参见CSS
coor_new = [self.UNIT * x + padding, self.UNIT * y + padding, self.UNIT * (x+1) - padding, self.UNIT * (y+1) - padding]
dx_pixels, dy_pixels = coor_new[0] - coor_old[0], coor_new[1] - coor_old[1] # 左上角顶点坐标之差
self.canvas.move(self.rect, dx_pixels, dy_pixels)
self.update() # tkinter内置的update!
time.sleep(step_time) class Agent(object):
'''个体类'''
MAZE_R = 6 # 迷宫行数
MAZE_C = 6 # 迷宫列数 def __init__(self, alpha=0.1, gamma=0.9):
'''初始化'''
self.states = range(self.MAZE_R * self.MAZE_C) # 状态集。0~35 共36个状态
self.actions = list('udlr') # 动作集。上下左右 4个动作 ↑↓←→ ←↑→↓↖↗↘↙
self.rewards = [0,-10,0, 0, 0, 0,
0,-10,0, 0,-10, 0,
0,-10,0,-10, 0, 0,
0,-10,0,-10, 0, 0,
0,-10,0,-10, 1, 0,
0, 0,0,-10, 0,10,] # 奖励集。出口奖励10,陷阱奖励-10,元宝奖励5
#self.hell_states = [1,7,13,19,25,15,31,37,43,10] # 陷阱位置 self.alpha = alpha
self.gamma = gamma self.q_table = pd.DataFrame(data=[[0 for _ in self.actions] for _ in self.states],
index=self.states,
columns=self.actions) def save_policy(self):
'''保存Q table'''
with open('q_table.pickle', 'wb') as f:
pickle.dump(self.q_table, f, pickle.HIGHEST_PROTOCOL) def load_policy(self):
'''导入Q table'''
with open('q_table.pickle', 'rb') as f:
self.q_table = pickle.load(f) def choose_action(self, state, epsilon=0.8):
'''选择相应的动作。根据当前状态,随机或贪婪,按照参数epsilon'''
#if (random.uniform(0,1) > epsilon) or ((self.q_table.ix[state] == 0).all()): # 探索
if random.uniform(0,1) > epsilon: # 探索
action = random.choice(self.get_valid_actions(state))
else:
#action = self.q_table.ix[state].idxmax() # 利用 当有多个最大值时,会锁死第一个!
#action = self.q_table.ix[state].filter(items=self.get_valid_actions(state)).idxmax() # 重大改进!然鹅与上面一样
s = self.q_table.ix[state].filter(items=self.get_valid_actions(state))
action = random.choice(s[s==s.max()].index) # 从可能有多个的最大值里面随机选择一个!
return action def get_q_values(self, state):
'''取给定状态state的所有Q value'''
q_values = self.q_table.ix[state, self.get_valid_actions(state)]
return q_values def update_q_value(self, state, action, next_state_reward, next_state_q_values):
'''更新Q value,根据贝尔曼方程'''
self.q_table.ix[state, action] += self.alpha * (next_state_reward + self.gamma * next_state_q_values.max() - self.q_table.ix[state, action]) def get_valid_actions(self, state):
'''取当前状态下所有的合法动作'''
valid_actions = set(self.actions)
if state // self.MAZE_C == 0: # 首行,则 不能向上
valid_actions -= set(['u'])
elif state // self.MAZE_C == self.MAZE_R - 1: # 末行,则 不能向下
valid_actions -= set(['d']) if state % self.MAZE_C == 0: # 首列,则 不能向左
valid_actions -= set(['l'])
elif state % self.MAZE_C == self.MAZE_C - 1: # 末列,则 不能向右
valid_actions -= set(['r']) return list(valid_actions) def get_next_state(self, state, action):
'''对状态执行动作后,得到下一状态'''
#u,d,l,r,n = -6,+6,-1,+1,0
if action == 'u' and state // self.MAZE_C != 0: # 除首行外,向上-MAZE_C
next_state = state - self.MAZE_C
elif action == 'd' and state // self.MAZE_C != self.MAZE_R - 1: # 除末行外,向下+MAZE_C
next_state = state + self.MAZE_C
elif action == 'l' and state % self.MAZE_C != 0: # 除首列外,向左-1
next_state = state - 1
elif action == 'r' and state % self.MAZE_C != self.MAZE_C - 1: # 除末列外,向右+1
next_state = state + 1
else:
next_state = state
return next_state def learn(self, env=None, episode=1000, epsilon=0.8):
'''q-learning算法'''
print('Agent is learning...')
for i in range(episode):
current_state = self.states[0] if env is not None: # 若提供了环境,则重置之!
env.move_agent_to(current_state) while current_state != self.states[-1]:
current_action = self.choose_action(current_state, epsilon) # 按一定概率,随机或贪婪地选择
next_state = self.get_next_state(current_state, current_action)
next_state_reward = self.rewards[next_state]
next_state_q_values = self.get_q_values(next_state)
self.update_q_value(current_state, current_action, next_state_reward, next_state_q_values)
current_state = next_state #if next_state not in self.hell_states: # 非陷阱,则往前;否则待在原位
# current_state = next_state if env is not None: # 若提供了环境,则更新之!
env.move_agent_to(current_state)
print(i)
print('\nok') def test(self):
'''测试agent是否已具有智能'''
count = 0
current_state = self.states[0]
while current_state != self.states[-1]:
current_action = self.choose_action(current_state, 1.) # 1., 100%贪婪
next_state = self.get_next_state(current_state, current_action)
current_state = next_state
count += 1 if count > self.MAZE_R * self.MAZE_C: # 没有在36步之内走出迷宫,则
return False # 无智能 return True # 有智能 def play(self, env=None, step_time=0.5):
'''玩游戏,使用策略'''
assert env != None, 'Env must be not None!' if not self.test(): # 若尚无智能,则
if pathlib.Path("q_table.pickle").exists():
self.load_policy()
else:
print("I need to learn before playing this game.")
self.learn(env, episode=1000, epsilon=0.5)
self.save_policy() print('Agent is playing...')
current_state = self.states[0]
env.move_agent_to(current_state, step_time)
while current_state != self.states[-1]:
current_action = self.choose_action(current_state, 1.) # 1., 100%贪婪
next_state = self.get_next_state(current_state, current_action)
current_state = next_state
env.move_agent_to(current_state, step_time)
print('\nCongratulations, Agent got it!') if __name__ == '__main__':
env = Maze() # 环境
agent = Agent() # 个体(智能体)
agent.learn(env, episode=1000, epsilon=0.6) # 先学习
#agent.save_policy()
#agent.load_policy()
agent.play(env) # 再玩耍 #env.after(0, agent.learn, env, 1000, 0.8) # 先学
#env.after(0, agent.save_policy) # 保存所学
#env.after(0, agent.load_policy) # 导入所学
#env.after(0, agent.play, env) # 再玩
env.mainloop()
Just enjoy it!
【强化学习】python 实现 q-learning 迷宫通用模板的更多相关文章
- 深度强化学习(DQN-Deep Q Network)之应用-Flappy Bird
		
深度强化学习(DQN-Deep Q Network)之应用-Flappy Bird 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-fu ...
 - 机器学习之强化学习概览(Machine Learning for Humans: Reinforcement Learning)
		
声明:本文翻译自Vishal Maini在Medium平台上发布的<Machine Learning for Humans>的教程的<Part 5: Reinforcement Le ...
 - 深度强化学习(Deep Reinforcement Learning)入门:RL base & DQN-DDPG-A3C introduction
		
转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题.子曰:温故而知新,在进一步深入研究和应 ...
 - 【转】【强化学习】Deep Q Network(DQN)算法详解
		
原文地址:https://blog.csdn.net/qq_30615903/article/details/80744083 DQN(Deep Q-Learning)是将深度学习deeplearni ...
 - [Reinforcement Learning] 强化学习介绍
		
随着AlphaGo和AlphaZero的出现,强化学习相关算法在这几年引起了学术界和工业界的重视.最近也翻了很多强化学习的资料,有时间了还是得自己动脑筋整理一下. 强化学习定义 先借用维基百科上对强化 ...
 - Deep Learning专栏--强化学习之从 Policy Gradient 到 A3C(3)
		
在之前的强化学习文章里,我们讲到了经典的MDP模型来描述强化学习,其解法包括value iteration和policy iteration,这类经典解法基于已知的转移概率矩阵P,而在实际应用中,我们 ...
 - (转) 深度强化学习综述:从AlphaGo背后的力量到学习资源分享(附论文)
		
本文转自:http://mp.weixin.qq.com/s/aAHbybdbs_GtY8OyU6h5WA 专题 | 深度强化学习综述:从AlphaGo背后的力量到学习资源分享(附论文) 原创 201 ...
 - 强化学习论文(Scalable agent alignment via reward modeling: a research direction)
		
原文地址: https://arxiv.org/pdf/1811.07871.pdf ======================================================== ...
 - 如何用简单例子讲解 Q - learning 的具体过程?
		
作者:牛阿链接:https://www.zhihu.com/question/26408259/answer/123230350来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明 ...
 
随机推荐
- 使用反射修改final属性
			
情型1:static final属性,无法修改其值. package m5.d7; import java.lang.reflect.Field; public class FieldTest { p ...
 - (网页)javascript小技巧(非常全)
			
事件源对象 event.srcElement.tagName event.srcElement.type 捕获释放 event.srcElement.setCapture(); event.srcE ...
 - 一文学redis操作(记录向)
			
相关内容: 虽然有参考文档,而且记忆太多也是耗脑,但学习的时候还是想要有个系统划分开知识点的文档,即使不要求去细致记忆,但划分开知识块后脑子里的印象才会更清晰,所以就有了这个博文. 主要是将各种命令进 ...
 - 配置文件读取工具类--PropertiesUtil
			
/** * 属性工具类 * @author admin * 参考:https://www.cnblogs.com/doudouxiaoye/p/5693454.html */ public class ...
 - VirtualBox下安装CentOS7系统
			
本文假定你已经知道如何安装VirtualBox虚拟机软件,并且已经安装好了. 首先我们需要准备好centos的iso镜像文件,可以从centos的官网下载. 以下操作使用的VirtualBox版本号是 ...
 - Anaconda3 错误集合
			
1. An error ocurred while starting the kernel 答:个人猜测有可能是配置文件出现问题,于是采用如下解决方法: 在终端中输入spyder --reset,重置 ...
 - 读取HTML文件进行格式化解析
			
#读取HTML文件进行格式化解析 $html = New-Object -ComObject "HTMLFile"; $source = Get-Content -Path &qu ...
 - 辽宁移动宽带体验及魔百盒M101s-2刷机
			
一.背景 坐标:辽宁 某城,移动宽带100M. 设备:移动赠送,华为光猫一只,魔百盒M101s-2电视盒子 一只,据安装人员说这个魔百盒是移动自己开发设计的. 二.上网体验 上网:浏览一般网站没问题. ...
 - ssh登陆慢的问题
			
识别主机名时卡一下,关掉DNS选项: root@ns-virtual-machine:~# grep -i dns /etc/ssh/sshd_config UseDNS no 如果还有问题,打开ve ...
 - 编写一个BAT脚本协助运维人员遇到问题时候调测数据库是否有效连接成功的操作攻略
			
简单摘要: 1.内网系统出现故障需要排查 2.运维人员不熟悉数据库操作,没法通过连接数据库和执行SQL语句的方式排查数据库及数据是否正常 3.解决方案:编写一个bat脚本,运维人员双击运行即可. ...