TensorFlow入门(五)多层 LSTM 通俗易懂版
欢迎转载,但请务必注明原文出处及作者信息。
@author: huangyongye
@creat_date: 2017-03-09
前言: 根据我本人学习 TensorFlow 实现 LSTM 的经历,发现网上虽然也有不少教程,其中很多都是根据官方给出的例子,用多层 LSTM 来实现 PTBModel 语言模型,比如:
tensorflow笔记:多层LSTM代码分析
但是感觉这些例子还是太复杂了,所以这里写了个比较简单的版本,虽然不优雅,但是还是比较容易理解。
如果你想了解 LSTM 的原理的话(前提是你已经理解了普通 RNN 的原理),可以参考我前面翻译的博客:
(译)理解 LSTM 网络 (Understanding LSTM Networks by colah)
如果你想了解 RNN 原理的话,可以参考 AK 的博客:
The Unreasonable Effectiveness of Recurrent Neural Networks
很多朋友提到多层怎么理解,所以自己做了一个示意图,希望帮助初学者更好地理解 多层RNN.
图1 3层RNN按时间步展开
本例不讲原理。通过本例,你可以了解到单层 LSTM 的实现,多层 LSTM 的实现。输入输出数据的格式。 RNN 的 dropout layer 的实现。
# -*- coding:utf-8 -*-
import tensorflow as tf
import numpy as np
from tensorflow.contrib import rnn
from tensorflow.examples.tutorials.mnist import input_data # 设置 GPU 按需增长
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config) # 首先导入数据,看一下数据的形式
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
print mnist.train.images.shape
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
(55000, 784)
1. 首先设置好模型用到的各个超参数
lr = 1e-3
# 在训练和测试的时候,我们想用不同的 batch_size.所以采用占位符的方式
batch_size = tf.placeholder(tf.int32) # 注意类型必须为 tf.int32
# batch_size = 128 # 每个时刻的输入特征是28维的,就是每个时刻输入一行,一行有 28 个像素
input_size = 28
# 时序持续长度为28,即每做一次预测,需要先输入28行
timestep_size = 28
# 每个隐含层的节点数
hidden_size = 256
# LSTM layer 的层数
layer_num = 2
# 最后输出分类类别数量,如果是回归预测的话应该是 1
class_num = 10 _X = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, class_num])
keep_prob = tf.placeholder(tf.float32)
2. 开始搭建 LSTM 模型,其实普通 RNNs 模型也一样
# 把784个点的字符信息还原成 28 * 28 的图片
# 下面几个步骤是实现 RNN / LSTM 的关键
####################################################################
# **步骤1:RNN 的输入shape = (batch_size, timestep_size, input_size)
X = tf.reshape(_X, [-1, 28, 28]) # **步骤2:定义一层 LSTM_cell,只需要说明 hidden_size, 它会自动匹配输入的 X 的维度
lstm_cell = rnn.BasicLSTMCell(num_units=hidden_size, forget_bias=1.0, state_is_tuple=True) # **步骤3:添加 dropout layer, 一般只设置 output_keep_prob
lstm_cell = rnn.DropoutWrapper(cell=lstm_cell, input_keep_prob=1.0, output_keep_prob=keep_prob) # **步骤4:调用 MultiRNNCell 来实现多层 LSTM
mlstm_cell = rnn.MultiRNNCell([lstm_cell] * layer_num, state_is_tuple=True) # **步骤5:用全零来初始化state
init_state = mlstm_cell.zero_state(batch_size, dtype=tf.float32) # **步骤6:方法一,调用 dynamic_rnn() 来让我们构建好的网络运行起来
# ** 当 time_major==False 时, outputs.shape = [batch_size, timestep_size, hidden_size]
# ** 所以,可以取 h_state = outputs[:, -1, :] 作为最后输出
# ** state.shape = [layer_num, 2, batch_size, hidden_size],
# ** 或者,可以取 h_state = state[-1][1] 作为最后输出
# ** 最后输出维度是 [batch_size, hidden_size]
# outputs, state = tf.nn.dynamic_rnn(mlstm_cell, inputs=X, initial_state=init_state, time_major=False)
# h_state = outputs[:, -1, :] # 或者 h_state = state[-1][1] # *************** 为了更好的理解 LSTM 工作原理,我们把上面 步骤6 中的函数自己来实现 ***************
# 通过查看文档你会发现, RNNCell 都提供了一个 __call__()函数(见最后附),我们可以用它来展开实现LSTM按时间步迭代。
# **步骤6:方法二,按时间步展开计算
outputs = list()
state = init_state
with tf.variable_scope('RNN'):
for timestep in range(timestep_size):
if timestep > 0:
tf.get_variable_scope().reuse_variables()
# 这里的state保存了每一层 LSTM 的状态
(cell_output, state) = mlstm_cell(X[:, timestep, :], state)
outputs.append(cell_output)
h_state = outputs[-1]
3. 设置 loss function 和 优化器,展开训练并完成测试
- 以下部分其实和之前写的 TensorFlow入门(三)多层 CNNs 实现 mnist分类 的对应部分是一样的。
# 上面 LSTM 部分的输出会是一个 [hidden_size] 的tensor,我们要分类的话,还需要接一个 softmax 层
# 首先定义 softmax 的连接权重矩阵和偏置
# out_W = tf.placeholder(tf.float32, [hidden_size, class_num], name='out_Weights')
# out_bias = tf.placeholder(tf.float32, [class_num], name='out_bias')
# 开始训练和测试
W = tf.Variable(tf.truncated_normal([hidden_size, class_num], stddev=0.1), dtype=tf.float32)
bias = tf.Variable(tf.constant(0.1,shape=[class_num]), dtype=tf.float32)
y_pre = tf.nn.softmax(tf.matmul(h_state, W) + bias) # 损失和评估函数
cross_entropy = -tf.reduce_mean(y * tf.log(y_pre))
train_op = tf.train.AdamOptimizer(lr).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) sess.run(tf.global_variables_initializer())
for i in range(2000):
_batch_size = 128
batch = mnist.train.next_batch(_batch_size)
if (i+1)%200 == 0:
train_accuracy = sess.run(accuracy, feed_dict={
_X:batch[0], y: batch[1], keep_prob: 1.0, batch_size: _batch_size})
# 已经迭代完成的 epoch 数: mnist.train.epochs_completed
print "Iter%d, step %d, training accuracy %g" % ( mnist.train.epochs_completed, (i+1), train_accuracy)
sess.run(train_op, feed_dict={_X: batch[0], y: batch[1], keep_prob: 0.5, batch_size: _batch_size}) # 计算测试数据的准确率
print "test accuracy %g"% sess.run(accuracy, feed_dict={
_X: mnist.test.images, y: mnist.test.labels, keep_prob: 1.0, batch_size:mnist.test.images.shape[0]})
Iter0, step 200, training accuracy 0.851562
Iter0, step 400, training accuracy 0.960938
Iter1, step 600, training accuracy 0.984375
Iter1, step 800, training accuracy 0.960938
Iter2, step 1000, training accuracy 0.984375
Iter2, step 1200, training accuracy 0.9375
Iter3, step 1400, training accuracy 0.96875
Iter3, step 1600, training accuracy 0.984375
Iter4, step 1800, training accuracy 0.992188
Iter4, step 2000, training accuracy 0.984375
test accuracy 0.9858
我们一共只迭代不到5个epoch,在测试集上就已经达到了0.9825的准确率,可以看出来 LSTM 在做这个字符分类的任务上还是比较有效的,而且我们最后一次性对 10000 张测试图片进行预测,才占了 725 MiB 的显存。而我们在之前的两层 CNNs 网络中,预测 10000 张图片一共用了 8721 MiB 的显存,差了整整 12 倍呀!! 这主要是因为 RNN/LSTM 网络中,每个时间步所用的权值矩阵都是共享的,可以通过前面介绍的 LSTM 的网络结构分析一下,整个网络的参数非常少。
4. 可视化看看 LSTM 的是怎么做分类的
毕竟 LSTM 更多的是用来做时序相关的问题,要么是文本,要么是序列预测之类的,所以很难像 CNNs 一样非常直观地看到每一层中特征的变化。在这里,我想通过可视化的方式来帮助大家理解 LSTM 是怎么样一步一步地把图片正确的给分类。
import matplotlib.pyplot as plt
看下面我找了一个字符 3
print mnist.train.labels[4]
[ 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
我们先来看看这个字符样子,上半部分还挺像 2 来的
X3 = mnist.train.images[4]
img3 = X3.reshape([28, 28])
plt.imshow(img3, cmap='gray')
plt.show()
我们看看在分类的时候,一行一行地输入,分为各个类别的概率会是什么样子的。
X3.shape = [-1, 784]
y_batch = mnist.train.labels[0]
y_batch.shape = [-1, class_num] X3_outputs = np.array(sess.run(outputs, feed_dict={
_X: X3, y: y_batch, keep_prob: 1.0, batch_size: 1}))
print X3_outputs.shape
X3_outputs.shape = [28, hidden_size]
print X3_outputs.shape
(28, 1, 256)
(28, 256)
h_W = sess.run(W, feed_dict={
_X:X3, y: y_batch, keep_prob: 1.0, batch_size: 1})
h_bias = sess.run(bias, feed_dict={
_X:X3, y: y_batch, keep_prob: 1.0, batch_size: 1})
h_bias.shape = [-1, 10]
bar_index = range(class_num)
for i in xrange(X3_outputs.shape[0]):
plt.subplot(7, 4, i+1)
X3_h_shate = X3_outputs[i, :].reshape([-1, hidden_size])
pro = sess.run(tf.nn.softmax(tf.matmul(X3_h_shate, h_W) + h_bias))
plt.bar(bar_index, pro[0], width=0.2 , align='center')
plt.axis('off')
plt.show()
在上面的图中,为了更清楚地看到线条的变化,我把坐标都去了,每一行显示了 4 个图,共有 7 行,表示了一行一行读取过程中,模型对字符的识别。可以看到,在只看到前面的几行像素时,模型根本认不出来是什么字符,随着看到的像素越来越多,最后就基本确定了它是字符 3.
好了,本次就到这里。有机会再写个优雅一点的例子,哈哈。其实学这个 LSTM 还是比较困难的,当时写 多层 CNNs 也就半天到一天的时间基本上就没啥问题了,但是这个花了我大概整整三四天,而且是在我对原理已经很了解(我自己觉得而已。。。)的情况下,所以学会了感觉还是有点小高兴的~
17-04-19补充几个资料:
- recurrent_network.py 一个简单的 tensorflow LSTM 例子。
- Tensorflow下构建LSTM模型进行序列化标注 介绍非常好的一个 NLP 开源项目。(例子中有些函数可能在新版的 tensorflow 中已经更新了,但并不影响理解)
5. 附:BASICLSTM.__call__()
'''code: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py''' def __call__(self, inputs, state, scope=None):
"""Long short-term memory cell (LSTM)."""
with vs.variable_scope(scope or "basic_lstm_cell"):
# Parameters of gates are concatenated into one multiply for efficiency.
if self._state_is_tuple:
c, h = state
else:
c, h = array_ops.split(value=state, num_or_size_splits=2, axis=1)
concat = _linear([inputs, h], 4 * self._num_units, True, scope=scope) # ** 下面四个 tensor,分别是四个 gate 对应的权重矩阵
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
i, j, f, o = array_ops.split(value=concat, num_or_size_splits=4, axis=1) # ** 更新 cell 的状态:
# ** c * sigmoid(f + self._forget_bias) 是保留上一个 timestep 的部分旧信息
# ** sigmoid(i) * self._activation(j) 是有当前 timestep 带来的新信息
new_c = (c * sigmoid(f + self._forget_bias) + sigmoid(i) *
self._activation(j)) # ** 新的输出
new_h = self._activation(new_c) * sigmoid(o) if self._state_is_tuple:
new_state = LSTMStateTuple(new_c, new_h)
else:
new_state = array_ops.concat([new_c, new_h], 1)
# ** 在(一般都是) state_is_tuple=True 情况下, new_h=new_state[1]
# ** 在上面博文中,就有 cell_output = state[1]
return new_h, new_state
本文代码:https://github.com/yongyehuang/Tensorflow-Tutorial
TensorFlow入门(五)多层 LSTM 通俗易懂版的更多相关文章
- tensorflow笔记:多层LSTM代码分析
tensorflow笔记:多层LSTM代码分析 标签(空格分隔): tensorflow笔记 tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) ten ...
- 转:TensorFlow入门(六) 双端 LSTM 实现序列标注(分词)
http://blog.csdn.net/Jerr__y/article/details/70471066 欢迎转载,但请务必注明原文出处及作者信息. @author: huangyongye @cr ...
- tensorflow笔记:多层CNN代码分析
tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 ...
- Tensorflow多层LSTM代码分析
1.tf.Graph() 你一旦开始你的任务,就已经有一个默认的图已经创建好了.而且可以通过调用tf.get_default_graph()来访问到. 添加一个操作到默认的图里面,只要简单的调用一个定 ...
- (转)TensorFlow 入门
TensorFlow 入门 本文转自:http://www.jianshu.com/p/6766fbcd43b9 字数3303 阅读904 评论3 喜欢5 CS224d-Day 2: 在 Da ...
- 脑残式网络编程入门(五):每天都在用的Ping命令,它到底是什么?
本文引用了公众号纯洁的微笑作者奎哥的技术文章,感谢原作者的分享. 1.前言 老于网络编程熟手来说,在测试和部署网络通信应用(比如IM聊天.实时音视频等)时,如果发现网络连接超时,第一时间想到的就是 ...
- TensorFlow入门学习(让机器/算法帮助我们作出选择)
catalogue . 个人理解 . 基本使用 . MNIST(multiclass classification)入门 . 深入MNIST . 卷积神经网络:CIFAR- 数据集分类 . 单词的向量 ...
- 深度学习原理与框架-递归神经网络-RNN网络基本框架(代码?) 1.rnn.LSTMCell(生成单层LSTM) 2.rnn.DropoutWrapper(对rnn进行dropout操作) 3.tf.contrib.rnn.MultiRNNCell(堆叠多层LSTM) 4.mlstm_cell.zero_state(state初始化) 5.mlstm_cell(进行LSTM求解)
问题:LSTM的输出值output和state是否是一样的 1. rnn.LSTMCell(num_hidden, reuse=tf.get_variable_scope().reuse) # 构建 ...
- 机器学习与Tensorflow(6)——LSTM的Tensorflow实现、Tensorboard简单实现、CNN应用
最近写的一些程序以及做的一个关于轴承故障诊断的程序 最近学习进度有些慢 而且马上假期 要去补习班 去赚下学期生活费 额.... 抓紧时间再多学习点 1.RNN递归神经网络Tensorflow实现程序 ...
随机推荐
- 使用volley上传多张图片,一个参数对应多张图片,转载
https://my.oschina.net/u/1177694/blog/491834 原帖地址 而如果使用volley的话,因为请求数据那些都很简便,但遇到上传文件就麻烦那可不好,同时使用多个网络 ...
- postmortem报告
beta阶段与alpha阶段的比较 beta阶段与alpha阶段的比较主要从个人方面和团队方面进行总结. 以下是我们的队员对于自己在beta阶段的实践和alpha阶段的改进的总结. 成员林静雯认为,自 ...
- [20170927]关于hugepages.txt
[20170927]关于hugepages.txt --//今天测试hugepages与内核参数nr_overcommit_hugepages,才发现HugePages_Surp表示什么? --// ...
- SQL Server 将一个表中字段的值复制到另一个表的字段中
具体方法如下 一:update 表2 set (要插入的列名)= select 表1.某一列 from 表1 left jion 表2 on 表1和表2的关联 where ..... 二:update ...
- 说说Android6.0动态申请权限的那些坑
白天在做SDK23版本的适配,遇到了不少坑,现在抽空记下来,以此为戒. 首先要知道哪些坑,就得先了解一些定义和基本使用方式. 那么先介绍一下动态申请的权限分组情况. 下面的权限组是由谷歌官方定义的,目 ...
- javascript获取DOM对象三种方法
1. getElementByID() getElementByID()方法可返回对拥有指定ID的第一个对象的引用 2. getElementByTagName() getElementByTagNa ...
- SQL2008 一直error40 无法连接到localhost
1. Problem 2. Reason 可能是之前卸载SQL Server时没卸载干净 后来又重新安装时导致默认实例名不能用 就随手写了个SQLMOLORY实例名 但其实系统内这时是有两个SQL实例 ...
- JS学习小结(上)
学而时习之,不亦说乎,开启JS学习新乐章~ JS是干啥的?网页特效,它主要是实现控制结构和样式,是一种行为,有多重要,不言而喻吧,页面炫酷的资本. 1. JS输出: alert("hello ...
- NSIS学习记录の----查找注册表某个键是否存在
最近要做一个注册表的判断.以往都是注册表某个键的键值存在查找,但是如何判断一个空键值的键是否存在呢(很多大厂装逼不写键值,有默认就好)? 下面给出解决办法(要沟通请邮件联系:7-7-2-7-0-6-5 ...
- python第四十八课——类函数和对象函数
5.类函数和对象函数 类函数:在定义函数的上面一行书写@classmethod,特点:没有self 有cls 对象函数:定义在class中的普通的def函数 演示类函数和对象函数的定义使用: 总结: ...