P1605 迷宫

这是一道毒瘤题。。。

这是一道广搜题 bfs 。。。

注释:

1.memcpy(b,a,sizeof(a))

把 a 的值全部复制给 b

memcpy(b,a,sizeof(int)*k)

把 a 中的 k 个元素复制给 b

头文件:#include<cstring>

代码:

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstring>
#include<queue>
using namespace std;
int n,m,t,sx,sy,fx,fy,tx,ty,ans=;
bool vis[][]; //表示是否为墙
int dx[]={-,,,},
dy[]={,,-,};
struct pos //结构体 x代表横坐标,y代表纵坐标,used[][]代表是否走过
{
int x,y,used[][]; };
bool pan(int x,int y) //判断是否合法
{
return x>=&&x<=n&&y>=&&y<=m&&vis[x][y]==;
} pos sa;
void bfs()
{
queue<pos>q; //队列
sa.x=sx;
sa.y=sy;
sa.used[sx][sy]=; //标记已走
q.push(sa); //入队
while(!q.empty())
{
pos h=q.front();
q.pop(); //出队
for(int i=;i<=;i++)
{
int xx=h.x+dx[i];
int yy=h.y+dy[i];
if(h.used[xx][yy]||(!pan(xx,yy))) //不可以走
continue ;
if(xx==fx&&yy==fy) //到终点
{
ans++;
continue ;
} sa.x=xx;
sa.y=yy;
memcpy(sa.used,h.used,sizeof(h.used)); //鬼知道这是干什么哒(我知道了)注释1
sa.used[xx][yy]=;
q.push(sa); //新的入队 }
}
}
int main()
{
cin>>n>>m>>t;
cin>>sx>>sy>>fx>>fy;
for(int i=;i<=t;i++)
{
cin>>tx>>ty;
vis[tx][ty]=;
} bfs(); //广搜 cout<<ans; return ; }

这还是一道深搜题 dfs 。。。

回顾一下递归回溯算法框架:

int search(int x,int y)
{
if(到目的地) 输出解;
else
for(int i=;i<=算符种数;i++)
{
if(符合条件)
{
保存结果;
search(下一层);
恢复:保存结果之前的状态{回溯};
}
}
}

代码:

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstring>
#include<queue>
using namespace std;
int n,m,t,sx,sy,fx,fy,tx,ty,ans=;
bool vis[][];
int dx[]={-,,,},
dy[]={,,-,};
bool pan(int x,int y)
{
return x>=&&x<=n&&y>=&&y<=m&&vis[x][y]==;
} void dfs(int x,int y)
{
if(x==fx&&y==fy)
ans++; for(int i=;i<=;i++)
{
int xx=x+dx[i];
int yy=y+dy[i];
if(pan(xx,yy))
{
vis[xx][yy]=;
dfs(xx,yy);
vis[xx][yy]=;
}
}
}
int main()
{
cin>>n>>m>>t;
cin>>sx>>sy>>fx>>fy;
for(int i=;i<=t;i++)
{
cin>>tx>>ty;
vis[tx][ty]=;
}
vis[sx][sy]=;
dfs(sx,sy); cout<<ans; return ; }

P1605 迷宫的更多相关文章

  1. 洛谷 P1605 迷宫

    题目链接 https://www.luogu.org/problemnew/show/P1605 题目背景 迷宫 题目描述 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 ...

  2. 洛谷—— P1605 迷宫

    P1605 迷宫 题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在 ...

  3. 洛谷P1605 迷宫——S.B.S.

    题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在迷宫 中移动有上下 ...

  4. 【搜索1】P1605 迷宫

    题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在迷宫 中移动有上下 ...

  5. (DFS)P1605 迷宫 洛谷

    题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在迷宫 中移动有上下 ...

  6. P1605 迷宫 dfs回溯法

    题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在迷宫 中移动有上下 ...

  7. 洛谷P1605 迷宫 (DFS)

    题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在迷宫 中移动有上下 ...

  8. 洛谷P1605 迷宫【dfs】

    题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在迷宫 中移动有上下 ...

  9. P1605 迷宫(洛谷)

    题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在迷宫中移动有上下左右 ...

随机推荐

  1. JS中常用的Math方法

    1.min()和max()方法 Math.min()用于确定一组数值中的最小值.Math.max()用于确定一组数值中的最大值. alert(Math.min(2,4,3,6,3,8,0,1,3)); ...

  2. 安装jdk配置环境变量JAVA_HOME不起作用

    今天重新安装系统,需要装jdk,配置环境变量,于是先配置JAVA_HOME  D:\Program Files\Java\jdk1.8.0_144, 然后在配置path路径,但是cmd到dos命令行输 ...

  3. rabbitmq 生产者 消费者(多个线程消费同一个队列里面的任务。) 一个通用rabbitmq消费确认,快速并发运行的框架。

    rabbitmq作为消息队列可以有消息消费确认机制,之前写个基于redis的通用生产者 消费者 并发框架,redis的list结构可以简单充当消息队列,但不具备消费确认机制,随意关停程序,会丢失一部分 ...

  4. LeetCode - 766. Toeplitz Matrix

    A matrix is Toeplitz if every diagonal from top-left to bottom-right has the same element. Now given ...

  5. Spring Boot Starter 的基本封装

    1)spring-boot-starter这是Spring Boot的核心启动器,包含了自动配置.日志和YAML. 2)spring-boot-starter-amqp通过spring-rabbit来 ...

  6. python处理u开头的字符串

    是用python处理excel过程中,从表格中解析除字符串,打印出来的中文却显示成了u'开头的乱码字符串,在控制台中输出的编码格式是utf-8,而excel表格的数据也是utf-8编码成的,但是解析成 ...

  7. 1.4 flask request和session

    2019-1-4 18:13:57 越努力,越幸运! 还有121天,flask讲完,还有4天,总时长130天 还有13天就讲完了 一月争取看完!!! 永远不要高估自己! 今天学了request和ses ...

  8. 15:CSS3 3D

    15:CSS3 3D 什么是3d的场景呢? 2d场景,在屏幕上水平和垂直的交叉线x轴和y轴 3d场景,在垂直于屏幕的方法,相对于3d多出个z轴 Z轴:靠近屏幕的方向是正向,远离屏幕的方向是反向 CSS ...

  9. python的time

    有时候需要获取并格式化输出把当前时间,需要用到datetime的strftime方法 >>from datetime import datetime >>datetime.no ...

  10. Java Web 笔试(面试)题

    1.Servlet 的生命周期,并说出 Servlet 与 CGI 的区别 Web 容器加载 Servlet 并将其实例化后,Servlet 生命周期开始,容器运行其 init 方法进行 Servle ...