[转帖]Loading Data into HAWQ
Loading Data into HAWQ
Loading data into the database is required to start using it but how? There are several approaches to achieve this basic requirement but achieve the result by approaching the problem in different ways. This allows you to load data that best matches your use case.
Table Setup
This table will be used for the testing in HAWQ. I have this table
created in a single node VM running Hortonworks HDP with HAWQ 2.0
installed. I’m using the default Resource Manager too.
CREATE TABLE test_data
(id int,
fname text,
lname text)
DISTRIBUTED RANDOMLY;
Singleton
Let’s start with probably the worst way first. Sometimes this way is
ideal because you have very little data to load but in most cases, avoid
singleton inserts. This approach inserts just a single tuple in a
single transaction.
head si_test_data.sql
insert into test_data (id, fname, lname) values (1, 'jon_00001', 'roberts_00001');
insert into test_data (id, fname, lname) values (2, 'jon_00002', 'roberts_00002');
insert into test_data (id, fname, lname) values (3, 'jon_00003', 'roberts_00003');
insert into test_data (id, fname, lname) values (4, 'jon_00004', 'roberts_00004');
insert into test_data (id, fname, lname) values (5, 'jon_00005', 'roberts_00005');
insert into test_data (id, fname, lname) values (6, 'jon_00006', 'roberts_00006');
insert into test_data (id, fname, lname) values (7, 'jon_00007', 'roberts_00007');
insert into test_data (id, fname, lname) values (8, 'jon_00008', 'roberts_00008');
insert into test_data (id, fname, lname) values (9, 'jon_00009', 'roberts_00009');
insert into test_data (id, fname, lname) values (10, 'jon_00010', 'roberts_00010');
This repeats for 10,000 tuples.
time psql -f si_test_data.sql > /dev/null
real 5m49.527s
As you can see, this is pretty slow and not recommended for inserting large amounts of data. Nearly 6 minutes to load 10,000 tuples is crawling.
COPY
If you are familiar with PostgreSQL then you will feel right at home
with this technique. This time, the data is in a file named
test_data.txt and it is not wrapped with an insert statement.
head test_data.txt
1|jon_00001|roberts_00001
2|jon_00002|roberts_00002
3|jon_00003|roberts_00003
4|jon_00004|roberts_00004
5|jon_00005|roberts_00005
6|jon_00006|roberts_00006
7|jon_00007|roberts_00007
8|jon_00008|roberts_00008
9|jon_00009|roberts_00009
10|jon_00010|roberts_00010
COPY test_data FROM '/home/gpadmin/test_data.txt' WITH DELIMITER '|';
COPY 10000
Time: 128.580 ms
This method is significantly faster but it loads the data through the master. This means it doesn’t scale well as the master will become the bottleneck but it does allow you to load data from a host anywhere on your network so long as it has access to the master.
gpfdist
gpfdist is a web server that serves posix files for the segments to
fetch. Segment processes will get the data directly from gpfdist and
bypass the master when doing so. This enables you to scale by adding
more gpfdist processes and/or more segments.
gpfdist -p 8888 &
[1] 128836
[gpadmin@hdb ~]$ Serving HTTP on port 8888, directory /home/gpadmin
Now you’ll need to create a new external table to read the data from gpfdist.
CREATE EXTERNAL TABLE gpfdist_test_data
(id int,
fname text,
lname text)
LOCATION ('gpfdist://hdb:8888/test_data.txt')
FORMAT 'TEXT' (DELIMITER '|');
And to load the data.
INSERT INTO test_data SELECT * FROM gpfdist_test_data;
INSERT 0 10000
Time: 98.362 ms
gpfdist is blazing fast and scales easily. You can add more than one gpfdist location in the external table, use wild cards, use different formats, and much more. The downside is the file must be on a host that all segments can reach. You also have to create a separate gpfdist process on that host.
gpload
gpload is a utility that automates the loading process by using gpfdist.
Review the documentation for more on this utility. Technically, it is
the same as gpfdist and external tables but just automates the commands
for you.
Programmable Extension Framework (PXF)
PXF allows you to read and write data to HDFS using external tables.
Like using gpfdist, it is done by each segment so it scales and executes
in parallel.
For this example, I’ve loaded the test data into HDFS.
hdfs dfs -cat /test_data/* | head
1|jon_00001|roberts_00001
2|jon_00002|roberts_00002
3|jon_00003|roberts_00003
4|jon_00004|roberts_00004
5|jon_00005|roberts_00005
6|jon_00006|roberts_00006
7|jon_00007|roberts_00007
8|jon_00008|roberts_00008
9|jon_00009|roberts_00009
10|jon_00010|roberts_00010
The external table definition.
CREATE EXTERNAL TABLE et_test_data
(id int,
fname text,
lname text)
LOCATION ('pxf://hdb:51200/test_data?Profile=HdfsTextSimple')
FORMAT 'TEXT' (DELIMITER '|');
And now to load it.
INSERT INTO test_data SELECT * FROM et_test_data;
INSERT 0 10000
Time: 227.599 ms
PXF is probably the best way to load data when using the “Data Lake” design. You load your raw data into HDFS and then consume it with a variety of tools in the Hadoop ecosystem. PXF can also read and write other formats.
Outsourcer and gplink
Last but not least are software programs I created. Outsourcer
automates the table creation and load of data directly to Greenplum or
HAWQ using gpfdist. It sources data from SQL Server and Oracle as these
are the two most common OLTP databases.
gplink is another tool that can read external data but this technique
can connect to any valid JDBC source. It doesn’t automate many of the
steps that Oustourcer does but it is a convenient tool to get data from a
JDBC source.
You might be thinking that sqoop does this but not exactly. gplink
and Outsourcer load data into HAWQ and Greenplum tables. It is
optimized for these databases and fixes data for you automatically.
Both remove null and newline characters and escapes the escape and
delimiter characters. With sqoop, you will have to read the data from
HDFS using PXF and then fix the errors that could be in the files.
Both tools are linked above.
Summary
This post gives a brief description on the various ways to load data
into HAWQ. Pick the right technique for your use case. As you can see,
HAWQ is very flexible and can handle a variety of ways to load data.
This entry was posted in Hadoop on July 14, 2016.
[转帖]Loading Data into HAWQ的更多相关文章
- Loading Data into HDFS
How to use a PDI job to move a file into HDFS. Prerequisites In order to follow along with this how- ...
- 使用OGG"Loading data from file to Replicat"的方法应该注意的问题:replicat进程是前台进程
使用OGG的 "Loading data from file to Replicat"的方法应该注意的问题:replicat进程是前台进程 因此.最好是在vncserver中调用该 ...
- OGG "Loading data from file to Replicat"table静态数据同步配置过程
OGG "Loading data from file to Replicat"table静态数据同步配置过程 一个.mgr过程 GGSCI (lei1) 3> view p ...
- Loading Data into a Table;MySQL从本地向数据库导入数据
在localhost中准备好了一个test数据库和一个pet表: mysql> SHOW DATABASES; +--------------------+ | Database | +---- ...
- loading data into a table(亲测有效)
一.实验要求 导入数据到数据库的表里 表内容如下: name owner species sex birth death Fluffy Harold cat f 1993-02-04 Cla ...
- HeadFirst Ruby 第十五章总结 Saving and loading data
前言 在上一章讲述了如何进行基础的操作,比如 处理 GET 请求的 get route, 再比如下载 gem 等等方面的知识.在这一章节,作者告诉我们如何储存.处理数据.整个过程分三步走: 首先,当 ...
- 解决eclipse+adt出现的 loading data for android 问题
因为公司最近做的项目中有用到一些第三方demo,蛋疼的是这些demo还比较旧...eclipse的... 于是给自己的eclipse装上了ADT插件,但是...因为我的eclipse比较新,Versi ...
- [MST] Loading Data from the Server using lifecycle hook
Let's stop hardcoding our initial state and fetch it from the server instead. In this lesson you wil ...
- fake_useragent—Error occurred during loading data报错问题
问题如下 解决方法: 在自己的临时文件下新建一个fake_useragent_0.1.11.json 把下面的文字复制进去 临时文件 直接输入cmd %temp% 即可进去 { "rando ...
随机推荐
- python编码转换
Pyton内部的字符串一般都是unicode编码或字节字符串编码:代码中字符串的默认编码与代码文件本身的编码是一致的:编码转换通常需要以unicode编码作为中间编码进行转换,即先将其他编码的字符串解 ...
- c# js 删除table原行数据
function addtreetotable(obj){ var table1 = document.getElementById("Table1"); var hang = ...
- eclipse Dynamic web module相关问题
大致因为java的web系统有多种类型,比如静态的和动态的,然后动态的java web project要设置dynamic web module,也就是动态网页模型,他必须要喝对应的服务器搭配好了才能 ...
- 改变下blog思维
自言自语 总是希望我写出来的东西都是精品或者尽我的努力使其接近精品,所以写一个就会消耗不少时间. 但是进来实在太忙,就没办法写:以至于断更了一大段时间.所以从现在开始记录一些很简小的东西直到我又开始有 ...
- hiredis 使用 linux c++
1.linux下如何安装hiredis 1)下载地址 https://github.com/redis/hiredis 2)编译和安装 解压后的文件夹执行 make;make install; 3) ...
- python 计算程序运行耗时的好用的代码
python 计算程序运行耗时的好用的代码: import time start=time.clock() sum=0 for i in range(50): sum=sum+i print(sum) ...
- Git_git diff 与 git diff -- cached 区别
1.首先,打开一个干净的工作区 2.对文件进行修改 3.使用 git diff 进行查看(这里的解释可能不是很准确,暂时这么理解!) 4. 执行 git add 将工作区中的内容add到stage, ...
- Hibernate非主键关联
一. 非主键关联,我们进行外键关联时,通常使用的是主键,但有时候需要使用到其他列时可以通过以下方法设置: 注解中:@JoinColumn(name="city", referenc ...
- 12、Bootstrap中文文档(其它插件分享)
给大家介绍一个前端框架让你从此写起前端代码与之先前相比如有神助般的效果拉就是Bootstrap. 本片导航: Bootstrap的下载 css样式的使用 JavaScript 效果的引用 其他前端插件 ...
- Deepin 15.4 如何使用 罗技无线键盘/鼠标(采用优联技术)
1.罗技的“无线优联技术”还是非常强大的,它跟具体的操作系统无关: 2.你只需要 让“优联接收器(一个USB设备)”跟 “无线键盘/鼠标” 配对即可,配对完之后,就无需再配对,即使把“优联接收器”插到 ...