Luogu4195 【模板】exBSGS(exBSGS)
如果a和p互质,用扩欧求逆元就可以直接套用普通BSGS。考虑怎么将其化至这种情况。
注意到当x>=logp时gcd(ax,p)是一个定值,因为这样的话每个存在于a中的质因子,其在ax中的出现次数一定比在p中的多。
于是对x<logp的情况暴力验证。对x>=logp的情况,设d=gcd(ax,p),剩下的问题变为求ax/d≡b/d(mod p/d),这里ax和p/d显然就是互质的了。
要求解这个方程,显然不能把d直接乘过去(好像也说不清为啥)。首先b%d>0时无解。然后考虑从ax中分离一部分,使该部分能整除d,再将该部分除以d后移到式子右边。直接分离的话会爆long long,每次分离一个a即可。剩下的就是普通BSGS了。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<map>
using namespace std;
#define ll long long
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int a,p,b;
map<int,int> f;
void exgcd(int a,int b,int &x,int &y)
{
if (b==)
{
x=,y=;
return;
}
exgcd(b,a%b,x,y);
int t=x;x=y;y=t-a/b*x;
}
int inv(int a)
{
int x,y;exgcd(a,p,x,y);
x=(x%p+p)%p;
return x;
}
int BSGS(int a,int b,int p)
{
int block=sqrt(p),t=;//cout<<a<<' '<<b<<' '<<p<<endl;
f.clear();
for (int i=;i<block;i++)
{
if (f.find(t)==f.end()) f[t]=i;
if (t==b) return i;
t=1ll*t*a%p;
}
int v=t;
for (int i=;i<=(p-)/block;i++)
{
if (f.find(1ll*b*inv(t)%p)!=f.end()) return i*block+f[1ll*b*inv(t)%p];
t=1ll*t*v%p;
}
return -;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("exbsgs.in","r",stdin);
freopen("exbsgs.out","w",stdout);
#endif
a=read(),p=read(),b=read();
while (a)
{
if (p==) printf(b==?"0\n":"No Solution\n");
else if (b==) printf("0\n");
else
{
int t=,ans=;
for (int i=;i<=;i++)
{
t=1ll*t*a%p;
if (t==b) {ans=i;break;}
}
if (!ans)
{
int u=gcd(p,t);
if (b%u==)
{
//a^x/u=b/u (%p/u)
int P=p;b/=u;p/=u;
for (int i=;i<=;i++)
if (P==p) {ans=i-;break;}
else
{
int u=gcd(a,P);
b=1ll*b*inv(a/u)%p;
P/=u;
}
ans+=BSGS(a,b,p);ans=max(ans,);
}
}
if (ans) printf("%d\n",ans);
else printf("No Solution\n");
}
a=read(),p=read(),b=read();
}
return ;
}
Luogu4195 【模板】exBSGS(exBSGS)的更多相关文章
- 【模板】exBSGS/Spoj3105 Mod
[模板]exBSGS/Spoj3105 Mod 题目描述 已知数\(a,p,b\),求满足\(a^x\equiv b \pmod p\)的最小自然数\(x\). 输入输出格式 输入格式: 每个测试文件 ...
- LG4195 【模板】exBSGS
exBSGS 已知数\(a,p,b\),求满足\(a^x≡b\ (\bmod p)\)的最小自然数\(x\). \(100\%\)的数据,\(a,p,b≤10^9\). _皎月半洒花的题解 其实本质上 ...
- P4195 【模板】exBSGS/Spoj3105 Mod
传送门 首先要懂得 $BSGS$,$BSGS$ 可以求出关于 $Y$ 的方程 $X^Y \equiv Z (mod\ mo)$ 的最小解,其中 $gcd(X,Z)=1$ $exBSGS$ 算是 $BS ...
- 算法笔记--BSGS && exBSGS 模板
https://www.cnblogs.com/sdzwyq/p/9900650.html 模板: unordered_map<int, int> mp; LL q_pow(LL n, L ...
- 模板BSGS(SDOI2011计算器) 模板EXBSGS
BSGS和EXBSGS是OI中用于解决A^xΞB(mod C)的常用算法. 1.BSGS BSGS用于A,C互质的情况. 令m=sqrt(C),此时x可表示为i*m+j. 式中i和j都<=sqr ...
- BSGS和EXBSGS
也许更好的阅读体验 \(Description\) 给定\(a,b,p\),求一个\(x\)使其满足\(a^x\equiv b\ \left(mod\ p\right)\) \(BSGS\) \(BS ...
- BSGS及其扩展
目录 定义 原理 朴素算法 数论分块 例题 Luogu2485 [SDOI2011]计算器 题解 代码 扩展 例题 Luogu4195 [模板]exBSGS/Spoj3105 Mod 代码 之前写了一 ...
- 数论ex
数论ex 数学学得太差了补补知识点or复习 Miller-Rabin 和 Pollard Rho Miller-Rabin 前置知识: 费马小定理 \[ a^{p-1}\equiv 1\pmod p, ...
- BSGS算法及其扩展
bsgs算法: 我们在逆元里曾经讲到过如何用殴几里得求一个同余方程的整数解.而\(bsgs\)就是用来求一个指数同余方程的最小整数解的:也就是对于\(a^x\equiv b \mod p\) 我们可以 ...
随机推荐
- Java发送QQ邮件
面试的时候被问到这个问题,别人问我用Java发过邮件没有,被问得一脸懵逼.然后就研究了一下,不是很难,按照网上的方法折腾了几天就搞出来了. 首先,使用QQ邮箱发送邮件之前需要在邮箱里面配置,开启pop ...
- Unable to execute dex: Multiple dex files defineLcom/google/gson/JsonDeserializer;
这是异常想必大家都知道的,是关于一个android jar包冲突的问题.为什么还要提呢,是因为这玩意真心让人蛋疼.有些时候稍微不注意(手贱)多导入一个包,就完蛋了.(jar包多的话搞不好带一上午调试) ...
- Java原子类AtomicInteger实现原理的一点总结
java原子类不多,包路径位于:java.util.concurrent.atomic,大致有如下的类: java.util.concurrent.atomic.AtomicBoolean java. ...
- 【原创】MVC +WebUploader 实现分片上传大文件
大文件的上传是我一直以来想学习的一个技术点,今天在项目闲暇之时,终于有机会自己尝试了一把,本文仅仅是个Demo,各种错误处理都么有,仅限于大家来学习思路. 参考博文:http://www.cnblog ...
- php的foreach中使用取地址符,注意释放
先来举个例子: <?php $array = array(1, 2, 3); foreach ($array as &$value) {} // unset($value); forea ...
- Linux安装RabbitMq-Centos7版本
一.Linux系统中安装RabbitMQ 由于RabbitMQ依赖于Erlang,所以先要在机器上安装Erlang环境 单机版 1.安装GCC GCC-C++ Openssl等模块 yum -y in ...
- (原创)odoo11配置邮件功能的那些事儿
要点总结: 1.odoo的邮件系统功能设计目的,主要是解决业务相关的邮件沟通问题,切记不要将odoo当作邮件系统或者邮件客户端使用 2.odoo收件,默认需要邮件系统支持catch-all功能,但可惜 ...
- InnoDB 文件系统
1. 操作系统文件系统inode 2. InnoDB的存储结构 2.1Innodb inode page 参考 http://mysql.taobao.org/monthly/2016/02/01/ ...
- 机器学习 第四篇:OLS回归分析
变量之间存在着相关关系,比如,人的身高和体重之间存在着关系,一般来说,人高一些,体重要重一些,身高和体重之间存在的是不确定性的相关关系.回归分析是研究相关关系的一种数学工具,它能帮助我们从一个变量的取 ...
- Centos7下部署两套python版本并存环境的操作记录
需求说明:centos7.2系统的开发机器上已经自带了python2.7版本,但是开发的项目中用的是python3.5版本,为了保证Centos系统的正常运行,以及节省机器资源(不想因此再申请另外一台 ...