题目描述

给定N个点以及每个点的权值,要你处理接下来的M个操作。
操作有4种。操作从0到3编号。点从1到N编号。
0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor和。
保证x到y是联通的。
1:后接两个整数(x,y),代表连接x到y,若x到Y已经联通则无需连接。
2:后接两个整数(x,y),代表删除边(x,y),不保证边(x,y)存在。
3:后接两个整数(x,y),代表将点X上的权值变成Y。

输入

第1行两个整数,分别为N和M,代表点数和操作数。
第2行到第N+1行,每行一个整数,整数在[1,10^9]内,代表每个点的权值。
第N+2行到第N+M+1行,每行三个整数,分别代表操作类型和操作所需的量。
1<=N,M<=300000

输出

对于每一个0号操作,你须输出X到Y的路径上点权的Xor和。

样例输入

3 3
1
2
3
1 1 2
0 1 2
0 1 1

样例输出

3
1
 
LCT模板题,splay维护子树异或和即可。因为cut时不保证边存在,所以注意cut时的判断。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
int x,y;
int opt;
int v[300010];
int f[300010];
int s[300010][2];
int st[300010];
int r[300010];
int sum[300010];
int get(int rt)
{
return rt==s[f[rt]][1];
}
void pushup(int rt)
{
sum[rt]=v[rt]^sum[s[rt][0]]^sum[s[rt][1]];
}
void pushdown(int rt)
{
if(r[rt])
{
swap(s[rt][0],s[rt][1]);
r[s[rt][0]]^=1;
r[s[rt][1]]^=1;
r[rt]^=1;
}
}
int is_root(int rt)
{
return s[f[rt]][0]!=rt&&s[f[rt]][1]!=rt;
}
void rotate(int rt)
{
int fa=f[rt];
int anc=f[fa];
int k=get(rt);
if(!is_root(fa))
{
s[anc][fa==s[anc][1]]=rt;
}
s[fa][k]=s[rt][k^1];
f[s[fa][k]]=fa;
s[rt][k^1]=fa;
f[fa]=rt;
f[rt]=anc;
pushup(fa);
pushup(rt);
}
void splay(int rt)
{
int top=0;
st[++top]=rt;
for(int i=rt;!is_root(i);i=f[i])
{
st[++top]=f[i];
}
for(int i=top;i>=1;i--)
{
pushdown(st[i]);
}
for(int fa;!is_root(rt);rotate(rt))
{
if(!is_root(fa=f[rt]))
{
rotate(get(rt)==get(fa)?fa:rt);
}
}
}
void access(int rt)
{
for(int x=0;rt;x=rt,rt=f[rt])
{
splay(rt);
s[rt][1]=x;
pushup(rt);
}
}
void reverse(int rt)
{
access(rt);
splay(rt);
r[rt]^=1;
}
int find(int rt)
{
access(rt);
splay(rt);
while(s[rt][0])
{
rt=s[rt][0];
}
return rt;
}
void link(int x,int y)
{
reverse(x);
f[x]=y;
}
void cut(int x,int y)
{
reverse(x);
access(y);
splay(y);
if(s[x][1]||f[x]!=y||s[y][get(x)^1])
{
return ;
}
s[y][0]=f[x]=0;
}
void change(int rt,int x)
{
v[rt]=x;
access(rt);
splay(rt);
}
int query(int x,int y)
{
reverse(x);
access(y);
splay(y);
return sum[y];
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d",&v[i]);
}
while(m--)
{
scanf("%d%d%d",&opt,&x,&y);
if(opt==0)
{
printf("%d\n",query(x,y));
}
else if(opt==1&&find(x)!=find(y))
{
link(x,y);
}
else if(opt==2&&find(x)==find(y))
{
cut(x,y);
}
else if(opt==3)
{
change(x,y);
}
}
}

BZOJ3282Tree——LCT的更多相关文章

  1. Link-Cut Tree(LCT)&TopTree讲解

    前言: Link-Cut Tree简称LCT是解决动态树问题的一种数据结构,可以说是我见过功能最强大的一种树上数据结构了.在此与大家分享一下LCT的学习笔记.提示:前置知识点需要树链剖分和splay. ...

  2. 一堆LCT板子

    搞了一上午LCT,真是累死了-- 以前总觉得LCT高大上不好学不好打,今天打了几遍感觉还可以嘛= =反正现在的水平应付不太难的LCT题也够用了,就这样好了,接下来专心搞网络流. 话说以前一直YY不出来 ...

  3. 动态树之LCT(link-cut tree)讲解

    动态树是一类要求维护森林的连通性的题的总称,这类问题要求维护某个点到根的某些数据,支持树的切分,合并,以及对子树的某些操作.其中解决这一问题的某些简化版(不包括对子树的操作)的基础数据结构就是LCT( ...

  4. 在此为LCT开一个永久的坑

    其实我连splay都还不怎么会. 今天先抄了黄学长的bzoj2049,以后一定要把它理解了. 写LCT怎么能不%数据结构大神yeweining呢?%%%chrysanthemums  %%%切掉大森林 ...

  5. 【BZOJ2157】旅游 LCT

    模板T,SB的DMoon..其实样例也是中国好样例...一开始不会复制,yangyang:找到“sample input”按住shift,按page down.... #include <ios ...

  6. 【BZOJ3669】[Noi2014]魔法森林 LCT

    终于不是裸的LCT了...然而一开始一眼看上去这是kruskal..不对,题目要求1->n的路径上的每个点的两个最大权值和最小,这样便可以用LCT来维护一个最小生成路(瞎编的...),先以a为关 ...

  7. 【BZOJ1180】: [CROATIAN2009]OTOCI & 2843: 极地旅行社 LCT

    竟然卡了我....忘记在push_down先下传父亲的信息了....还有splay里for():卡了我10min,但是双倍经验还是挺爽的,什么都不用改. 感觉做的全是模板题,太水啦,不能这么水了... ...

  8. 【BZOJ3282】Tree LCT

    1A爽,感觉又对指针重怀信心了呢= =,模板题,注意单点修改时splay就好,其实按吾本意是没写的也A了,不过应该加上能更好维护平衡性. ..还是得加上好= = #include <iostre ...

  9. BZOJ2888 资源运输(LCT启发式合并)

    这道题目太神啦! 我们考虑他的每一次合并操作,为了维护两棵树合并后树的重心,我们只好一个一个的把节点加进去.那么这样一来看上去似乎就是一次操作O(nlogn),但是我们拥有数据结构的合并利器--启发式 ...

随机推荐

  1. QT QListWidget 简单的操作

    以下是简单的 listWidget 的方法的功能 listWidget = QListWidget() #实例化一个(item base)的列表 listWidget.addItem('dd') #添 ...

  2. Linux下NTP服务器配置

    简介 原理 配置ntp服务器 进行同步 一.简介 在计算时间的时候,最准确的计算应该是使用『原子震荡周期』所计算的物理时钟了( Atomic Clock, 也被称为原子钟 ),这也被定义为标准时间(I ...

  3. three.js - 动画 图形统计帧频 dat.GUI

    运行一把: 代码解释: <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...

  4. 【C语言】结构体占用字节数及存储与空间分配

    我们都知道在数据类型中,char类型占1个字节,short占2个字节,int占4个字节,long占8个字节等等. 在计算结构体大小时需要考虑其内存布局,结构体在内存中存放是按单元存放的,每个单元多大取 ...

  5. Lua 中的条件表达式

    下面这代码段看上去很熟悉,就是C#里面的条件表达式,很多其它语言也都有这么一个条件表达式. ; ; string c = "c"; string d = "d" ...

  6. LOJ2687 BOI2013 Vim 线头DP

    传送门 多图警告!!! 一种很新奇的\(DP\),全网似乎只有一两篇题解-- 首先,序列中的一段\(e\)等价于在跳的过程中这一段\(e\)之后的一个字符必须要经过,并且在最后的答案中加上$2 \ti ...

  7. Vue-父子组件传值

    在 Vue 中,父子组件的关系可以总结为 prop 向下传递,事件向上传递.一.父组件向子组件传值 使用 Prop 传递数据,父组件的数据需要通过 prop 才能下发到子组件中,子组件要显式地用 pr ...

  8. 在WPF中使用FontAwesome图标字体

    原文:在WPF中使用FontAwesome图标字体 版权声明:原创内容转载必须注明出处,否则追究相关责任. https://blog.csdn.net/qq_36663276/article/deta ...

  9. LiveCharts文档-4基本绘图-1基本线条图

    原文:LiveCharts文档-4基本绘图-1基本线条图 4基本绘图-1基本线条图 using System; using System.Windows.Forms; using System.Win ...

  10. [Oacle][Partition]Partition操作与 Index, Global Index 的关系

    [Oacle][Partition]Partition操作与 Index, Global Index 的关系: ■ Regarding the local index and the global i ...