BZOJ3175[Tjoi2013]攻击装置——二分图最大独立集
题目描述
给定一个01矩阵,其中你可以在0的位置放置攻击装置。每一个攻击装置(x,y)都可以按照“日”字攻击其周围的 8个位置(x-1,y-2),(x-2,y-1),(x+1,y-2),(x+2,y-1),(x-1,y+2),(x-2,y+1), (x+1,y+2),(x+2,y+1)
求在装置互不攻击的情况下,最多可以放置多少个装置。
输入
输出
样例输入
010
000
100
样例输出
提示
100%数据 N<=200
将矩阵黑白染色(就是相邻格子染不同颜色),可以发现每个攻击装置能攻击到的格子和它所在格子染色不同,将源点连向白色格子,黑色格子连向汇点,每个白点连向能攻击到的黑点,跑二分图最大匹配,然后用总格子数-最大匹配-矩阵中1的个数。这个为什么是对的?因为相连的点表示能互相攻击到,去掉二分图最大匹配的边之后剩下的点之间一定不相连就一定不会互相攻击到。同时给这个残留的二分图加上之前任何一个删除的点都会有匹配边,所以这样是最大的。
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
int next[1000001];
int to[1000001];
int val[1000001];
int head[1000001];
int tot=1;
int q[100001];
int n,k;
int S,T;
int ans=0;
int x,y;
int d[100001];
char s[1001][1001];
int c[1001][1001];
const int dx[]={-2,-1,1,2,2,1,-1,-2};
const int dy[]={1,2,2,1,-1,-2,-2,-1};
void add(int x,int y,int v)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=v;
tot++;
next[tot]=head[y];
head[y]=tot;
to[tot]=x;
val[tot]=0;
}
bool bfs(int S,int T)
{
int r=0;
int l=0;
memset(q,0,sizeof(q));
memset(d,-1,sizeof(d));
q[r++]=S;
d[S]=0;
while(l<r)
{
int now=q[l];
for(int i=head[now];i;i=next[i])
{
if(d[to[i]]==-1&&val[i]!=0)
{
d[to[i]]=d[now]+1;
q[r++]=to[i];
}
}
l++;
}
if(d[T]==-1)
{
return false;
}
else
{
return true;
}
}
int dfs(int x,int flow)
{
if(x==T)
{
return flow;
}
int now_flow;
int used=0;
for(int i=head[x];i;i=next[i])
{
if(d[to[i]]==d[x]+1&&val[i]!=0)
{
now_flow=dfs(to[i],min(flow-used,val[i]));
val[i]-=now_flow;
val[i^1]+=now_flow;
used+=now_flow;
if(now_flow==flow)
{
return flow;
}
}
}
if(used==0)
{
d[x]=-1;
}
return used;
}
void dinic()
{
while(bfs(S,T)==true)
{
ans+=dfs(S,0x3f3f3f);
}
}
int main()
{
scanf("%d",&n);
S=n*n+1;
T=n*n+2;
for(int i=1;i<=n;i++)
{
scanf("%s",s[i]+1);
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(s[i][j]=='0')
{
c[i][j]=(i-1)*n+j;
if((i+j)%2==0)
{
add(S,c[i][j],1);
}
else
{
add(c[i][j],T,1);
}
}
else
{
k++;
}
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(s[i][j]!='1'&&(i+j)%2==0)
{
for(int m=0;m<=7;m++)
{
int fx=dx[m]+i;
int fy=dy[m]+j;
if(fx>0&&fx<=n&&fy>0&&fy<=n&&c[fx][fy]!=-1)
{
add(c[i][j],c[fx][fy],0x3f3f3f);
}
}
}
}
}
dinic();
printf("%d",n*n-k-ans);
}
BZOJ3175[Tjoi2013]攻击装置——二分图最大独立集的更多相关文章
- BZOJ3175:[TJOI2013]攻击装置(二分图最大独立集)
Description 给定一个01矩阵,其中你可以在0的位置放置攻击装置.每一个攻击装置(x,y)都可以按照“日”字攻击其周围的 8个位置(x-1,y-2),(x-2,y-1),(x+1,y-2), ...
- bzoj4808: 马 & bzoj3175: [Tjoi2013]攻击装置 (黑白染色+最小割)
bzoj4808: 马 & bzoj3175: [Tjoi2013]攻击装置 题目:传送门 简要题意: 和n皇后问题差不多,但是这里是每个棋子走日子,而且有些格子不能放棋子.求最多能放多少个棋 ...
- BZOJ3175: [Tjoi2013]攻击装置
题解: 最大点独立集...好像水过头了... 不过发现我二分图好像忘完了!!! 代码: #include<cstdio> #include<cstdlib> #include& ...
- 【BZOJ 3175】 3175: [Tjoi2013]攻击装置(二分图匹配)
3175: [Tjoi2013]攻击装置 Description 给定一个01矩阵,其中你可以在0的位置放置攻击装置.每一个攻击装置(x,y)都可以按照“日”字攻击其周围的 8个位置(x-1,y-2) ...
- BZOJ3175 Tjoi2013 攻击装置(二分图匹配)
传送门 Description 给定一个01矩阵,其中你可以在0的位置放置攻击装置.每一个攻击装置(x,y)都可以按照"日"字攻击其周围的 8个位置(x-1,y-2),(x-2,y ...
- [TJOI2013] 攻击装置 - 二分图匹配
给定 \(N \times N\) 棋盘,某些格子是障碍,问可以放置的互不侵犯的马的个数 黑白染色后建立二分图,求最大独立集 = 总点数 - 最大匹配数 注意把反边也连上会WA掉(脑抽一发血) #in ...
- bzoj3175: [Tjoi2013]攻击装置&&4808: 马
终于知道为啥网络流这么受欢迎了. 其实就是构个图模板一下的事儿,比较好打是吧. 然后这题网络流黑白染色(其实感觉上匈牙利更加直接好想啊,但是实际上黑白染色给人感觉就是二分图) st连白而ed连黑,流量 ...
- BZOJ_3175_[Tjoi2013]攻击装置_二分图匹配
BZOJ_3175_[Tjoi2013]攻击装置_二分图匹配Description 给定一个01矩阵,其中你可以在0的位置放置攻击装置.每一个攻击装置(x,y)都可以按照“日”字攻击其周围的 8个位置 ...
- 【洛谷】4304:[TJOI2013]攻击装置【最大点独立集】【二分图】2172: [国家集训队]部落战争【二分图/网络流】【最小路径覆盖】
P4304 [TJOI2013]攻击装置 题目描述 给定一个01矩阵,其中你可以在0的位置放置攻击装置. 每一个攻击装置(x,y)都可以按照“日”字攻击其周围的8个位置(x-1,y-2),(x-2,y ...
随机推荐
- Spring Boot 之 Profile 使用
Spring Boot 之 Profile 使用 一个应用为了在不同的环境下工作,常常会有不同的配置,代码逻辑处理.Spring Boot 对此提供了简便的支持. 关键词: @Profile.spri ...
- Luogu4697 CEOI2011 Balloons 单调栈
传送门 题意:给出$N$个气球,从左往右给出它们的$x_i$与$r_i$.现在从左往右给它们充气,每一个气球在充气的过程中始终在$x_i$点与地面相切,且最大半径为$r_i$.如果在充气的过程中气球与 ...
- Ionic 安装JPush过程
1.在官网注册App帐号,完成后会生成对应的AppKey 2. 进行在线安装 cordova plugin add https://github.com/jpush/jpush-phonegap-pl ...
- Spring Cloud 入门教程(五): Ribbon实现客户端的负载均衡
接上节,假如我们的Hello world服务的访问量剧增,用一个服务已经无法承载, 我们可以把Hello World服务做成一个集群. 很简单,我们只需要复制Hello world服务,同时将原来的端 ...
- 渐进式 JavaScript 框架--Vue
前 言 灵活 不断繁荣的生态系统,可以在一个库和一套完整框架之间自如伸缩. 高效 20kB min+gzip 运行大小超快虚拟 DOM 最省心的优化 1 计算属性 计算属性关键词: comp ...
- aws ubuntu 开启root
Linux VPS没有ROOT权限是很难受的事,并且密码登陆也方便一些.我的AWS VPS的LINUX版本是UBUNTU 13.10,首先用AWS证书验证的账户登录, 1.修改ROOT密码sudo p ...
- GlusterFS分布式存储数据的恢复机制(AFR)的说明
GlusterFSFS恢复数据都是基于副本卷来说的,GlusterFSFS复制卷是采用镜像的方式做的,并且是同步事务性操作.简单来说就是,某一个客户要写文件时,先把这个文件锁住,然后同时写两个或多个副 ...
- 磁盘挂载问题:Fdisk最大只能创建2T分区的盘,超过2T使用parted
需求说明:云服务器上买了一块8T的磁盘,准备挂载到服务器上的/data目录下. ===================================parted命令说明=============== ...
- ubuntu系统升级和其他相关操作记录
之前在openstack中安装了ubuntu 12.04虚拟机,版本较低,需要升级为高版本.下面分享下升级过程: ubuntu系统升级操作:$ cat /etc/issueUbuntu 12.04.5 ...
- centos7下部署iptables环境纪录(关闭默认的firewalle)
CentOS7默认的防火墙不是iptables,而是firewall.由于习惯了用iptables作为防火墙,所以在安装好centos7系统后,会将默认的firewall关闭,并另安装iptables ...