BZOJ3175[Tjoi2013]攻击装置——二分图最大独立集
题目描述
给定一个01矩阵,其中你可以在0的位置放置攻击装置。每一个攻击装置(x,y)都可以按照“日”字攻击其周围的 8个位置(x-1,y-2),(x-2,y-1),(x+1,y-2),(x+2,y-1),(x-1,y+2),(x-2,y+1), (x+1,y+2),(x+2,y+1)
求在装置互不攻击的情况下,最多可以放置多少个装置。
输入
输出
样例输入
010
000
100
样例输出
提示
100%数据 N<=200
将矩阵黑白染色(就是相邻格子染不同颜色),可以发现每个攻击装置能攻击到的格子和它所在格子染色不同,将源点连向白色格子,黑色格子连向汇点,每个白点连向能攻击到的黑点,跑二分图最大匹配,然后用总格子数-最大匹配-矩阵中1的个数。这个为什么是对的?因为相连的点表示能互相攻击到,去掉二分图最大匹配的边之后剩下的点之间一定不相连就一定不会互相攻击到。同时给这个残留的二分图加上之前任何一个删除的点都会有匹配边,所以这样是最大的。
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
int next[1000001];
int to[1000001];
int val[1000001];
int head[1000001];
int tot=1;
int q[100001];
int n,k;
int S,T;
int ans=0;
int x,y;
int d[100001];
char s[1001][1001];
int c[1001][1001];
const int dx[]={-2,-1,1,2,2,1,-1,-2};
const int dy[]={1,2,2,1,-1,-2,-2,-1};
void add(int x,int y,int v)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=v;
tot++;
next[tot]=head[y];
head[y]=tot;
to[tot]=x;
val[tot]=0;
}
bool bfs(int S,int T)
{
int r=0;
int l=0;
memset(q,0,sizeof(q));
memset(d,-1,sizeof(d));
q[r++]=S;
d[S]=0;
while(l<r)
{
int now=q[l];
for(int i=head[now];i;i=next[i])
{
if(d[to[i]]==-1&&val[i]!=0)
{
d[to[i]]=d[now]+1;
q[r++]=to[i];
}
}
l++;
}
if(d[T]==-1)
{
return false;
}
else
{
return true;
}
}
int dfs(int x,int flow)
{
if(x==T)
{
return flow;
}
int now_flow;
int used=0;
for(int i=head[x];i;i=next[i])
{
if(d[to[i]]==d[x]+1&&val[i]!=0)
{
now_flow=dfs(to[i],min(flow-used,val[i]));
val[i]-=now_flow;
val[i^1]+=now_flow;
used+=now_flow;
if(now_flow==flow)
{
return flow;
}
}
}
if(used==0)
{
d[x]=-1;
}
return used;
}
void dinic()
{
while(bfs(S,T)==true)
{
ans+=dfs(S,0x3f3f3f);
}
}
int main()
{
scanf("%d",&n);
S=n*n+1;
T=n*n+2;
for(int i=1;i<=n;i++)
{
scanf("%s",s[i]+1);
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(s[i][j]=='0')
{
c[i][j]=(i-1)*n+j;
if((i+j)%2==0)
{
add(S,c[i][j],1);
}
else
{
add(c[i][j],T,1);
}
}
else
{
k++;
}
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(s[i][j]!='1'&&(i+j)%2==0)
{
for(int m=0;m<=7;m++)
{
int fx=dx[m]+i;
int fy=dy[m]+j;
if(fx>0&&fx<=n&&fy>0&&fy<=n&&c[fx][fy]!=-1)
{
add(c[i][j],c[fx][fy],0x3f3f3f);
}
}
}
}
}
dinic();
printf("%d",n*n-k-ans);
}
BZOJ3175[Tjoi2013]攻击装置——二分图最大独立集的更多相关文章
- BZOJ3175:[TJOI2013]攻击装置(二分图最大独立集)
Description 给定一个01矩阵,其中你可以在0的位置放置攻击装置.每一个攻击装置(x,y)都可以按照“日”字攻击其周围的 8个位置(x-1,y-2),(x-2,y-1),(x+1,y-2), ...
- bzoj4808: 马 & bzoj3175: [Tjoi2013]攻击装置 (黑白染色+最小割)
bzoj4808: 马 & bzoj3175: [Tjoi2013]攻击装置 题目:传送门 简要题意: 和n皇后问题差不多,但是这里是每个棋子走日子,而且有些格子不能放棋子.求最多能放多少个棋 ...
- BZOJ3175: [Tjoi2013]攻击装置
题解: 最大点独立集...好像水过头了... 不过发现我二分图好像忘完了!!! 代码: #include<cstdio> #include<cstdlib> #include& ...
- 【BZOJ 3175】 3175: [Tjoi2013]攻击装置(二分图匹配)
3175: [Tjoi2013]攻击装置 Description 给定一个01矩阵,其中你可以在0的位置放置攻击装置.每一个攻击装置(x,y)都可以按照“日”字攻击其周围的 8个位置(x-1,y-2) ...
- BZOJ3175 Tjoi2013 攻击装置(二分图匹配)
传送门 Description 给定一个01矩阵,其中你可以在0的位置放置攻击装置.每一个攻击装置(x,y)都可以按照"日"字攻击其周围的 8个位置(x-1,y-2),(x-2,y ...
- [TJOI2013] 攻击装置 - 二分图匹配
给定 \(N \times N\) 棋盘,某些格子是障碍,问可以放置的互不侵犯的马的个数 黑白染色后建立二分图,求最大独立集 = 总点数 - 最大匹配数 注意把反边也连上会WA掉(脑抽一发血) #in ...
- bzoj3175: [Tjoi2013]攻击装置&&4808: 马
终于知道为啥网络流这么受欢迎了. 其实就是构个图模板一下的事儿,比较好打是吧. 然后这题网络流黑白染色(其实感觉上匈牙利更加直接好想啊,但是实际上黑白染色给人感觉就是二分图) st连白而ed连黑,流量 ...
- BZOJ_3175_[Tjoi2013]攻击装置_二分图匹配
BZOJ_3175_[Tjoi2013]攻击装置_二分图匹配Description 给定一个01矩阵,其中你可以在0的位置放置攻击装置.每一个攻击装置(x,y)都可以按照“日”字攻击其周围的 8个位置 ...
- 【洛谷】4304:[TJOI2013]攻击装置【最大点独立集】【二分图】2172: [国家集训队]部落战争【二分图/网络流】【最小路径覆盖】
P4304 [TJOI2013]攻击装置 题目描述 给定一个01矩阵,其中你可以在0的位置放置攻击装置. 每一个攻击装置(x,y)都可以按照“日”字攻击其周围的8个位置(x-1,y-2),(x-2,y ...
随机推荐
- 使用HttpClient和Jsoup实现一个简单爬虫
一直很想了解一下爬虫这个东西的,完全是出于兴趣,其实刚开始是准备用python的,但是由于种种原因选择了java,此处省略很多字... 总之,如果你想做一件事情的话就尽快去做吧,千万不要把战线拉得太长 ...
- WPF 模拟UI 键盘录入
原文:WPF 模拟UI 键盘录入 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/yangyisen0713/article/details/1835 ...
- Python高级特性(切片,迭代,列表生成式,生成器,迭代器)
掌握了Python的数据类型.语句和函数,基本上就可以编写出很多有用的程序了. 比如构造一个1, 3, 5, 7, ..., 99的列表,可以通过循环实现: L = [] n = 1 while n ...
- aurora 64B/66B ip核设置与例程代码详解
见网页https://blog.csdn.net/u014586651/article/details/84349328 https://blog.csdn.net/u012135070/articl ...
- 记录:EM 算法估计混合高斯模型参数
当概率模型依赖于无法观测的隐性变量时,使用普通的极大似然估计法无法估计出概率模型中参数.此时需要利用优化的极大似然估计:EM算法. 在这里我只是想要使用这个EM算法估计混合高斯模型中的参数.由于直观原 ...
- Redis常用操作-------Hash(哈希表)
1.HDEL key field [field ...] 删除哈希表 key 中的一个或多个指定域,不存在的域将被忽略. 在Redis2.4以下的版本里, HDEL 每次只能删除单个域,如果你需要在一 ...
- Python_闭包_27
#闭包:嵌套函数,内部函数 并且必须调用外部函数的变量 def outer(): a = 1 def inner(): print(a) inner() print(inner.__closure__ ...
- 作业20171116 beta2及beta发布 成绩
申诉 对成绩有疑问或不同意见的同学,请在群里[@杨贵福]. 申诉时间截止2017年12月13日 17:00. 成绩 scrum01 scrum02 scrum03 scrum04 scrum05 sc ...
- maven依赖的描述
maven的坐标和依赖 坐标和依赖,主要涉及的就是pom文件的头部和<dependencies>标签部分(1)pom文件的头部 这里头部不是指pom文件的开头<project> ...
- 【实践报告】Linux实践二
3.编译并安装内核与模块 sudo make bzImage –j3 编译内核 sudo make modules –j3 编译模块 sudo make modules ...