A Structured Self-Attentive Sentence Embedding

ICLR 2017

2018-08-19 14:07:29

Paperhttps://arxiv.org/pdf/1703.03130.pdf

Code(PyTorch)https://github.com/kaushalshetty/Structured-Self-Attention

Video Tutorial (Youtube)Ivan Bilan: Understanding and Applying Self-Attention for NLP | PyData Berlin 2018

Blog

1. 机器之心

2. https://www.paperweekly.site/papers/notes/148

Related PapersSelf-Attention Generative Adversarial Networks

Background and Motivation:

现有的处理文本的常规流程第一步就是:Word embedding。也有一些 embedding 的方法是考虑了 phrase 和 sentences 的。这些方法大致可以分为两种: universal sentence(general 的句子)和 certain task(特定的任务);常规的做法:利用 RNN 最后一个隐层的状态,或者 RNN hidden states 的 max or average pooling 或者 convolved n-grams. 也有一些工作考虑到 解析和依赖树(parse and dependence trees);

对于一些工作,人们开始考虑通过引入额外的信息,用 attention 的思路,以辅助 sentence embedding。但是对于某些任务,如:情感分类,并不能直接使用这种方法,因为并没有此类额外的信息:the model is only given one single sentence as input. 此时,最常用的做法就是 max pooling or averaging 所有的 RNN 时间步骤的隐层状态,或者只提取最后一个时刻的状态作为最终的 embedding。

而本文提出一种 self-attention 的机制来替换掉通常使用的 max pooling or averaging step. 因为作者认为:carrying the semantics along all time steps of a recurrent model is relatively hard and not necessary. 不同于前人的方法,本文所提出的 self-attention mechanism 允许提取句子的不同方便的信息,来构成多个向量的表示(allows extracting different aspects of the sentence into multiple vector representation)。在我们的句子映射模型中,是在 LSTM 的顶端执行的。这确保了 attention 模型可以应用于没有额外信息输入的任务当中,并且减少了 lstm 的一些长期记忆负担。另外一个好处是,可视化提取的 embedding 变的非常简单和直观。

Approach Details

1. Model

所提出的 sentence embedding model 包含两个部分:(1)双向 lstm;(2)the self-attention mechanism;

给定一个句子,我们首先将其进行 Word embedding,得到:S = (w1, w2, ... , wn),然后讲这些 vector 拼成一个 2-D 的矩阵,维度为:n*d;

然后为了 model 不同单词之间的关系,我们利用双向 lstm 来建模,得到其两个方向的隐层状态,然后,此时我们可以得到维度为:n*2u 的矩阵,记为:H。

为了将变长的句子,编码为固定长度的 embedding。我们想通过选择 n 个 LSTM hidden states 的线性组合,来达到这一目标。计算这样的线性组合,需要利用 self-attention 机制,该机制将 lstm 的所有隐层状态 H 作为输入,并且输出为一个向量权重 a

  

其中,$W_{s1}$ 是大小为 $d_a * 2u$ 的权重矩阵,$w_{s2}$ 是大小为 $d_a$ 的向量参数,这里的 $d_a$ 是我们可以自己设定的。由于 H 的大小为:n * 2u, annotation vector a 大小为 n,the softmax()函数确保了计算的权重加和为1. 然后我们将 lstm 的隐层状态 H 和 attention weight a 进行加权,即可得到 attend 之后的向量 m

向量的表示通常聚焦于句子的特定成分,像一个特定的相关单词或者词汇的集合。所以,我们需要反映出不同的语义的成分和放慢。但是,一个句子中可能有多个不同的成分,特别是长句子。所以,为了表示句子的总体的语义,我们需要多个 m's 来聚焦于不同的部分。所以,我们需要用到:multiple hops of attention. 即:我们想从句子中提取出 r 个不同的部分,我们将 $w_s2$ 拓展为:$r * d_a$ 的 matrix,记为:$W_{s2}$,然后 the resulting annotation vector a 变为了 annotation matrix A. 正式的来说:

此处,softmax()是沿着输入的 第二个维度执行的。我们可以将公式(6)看做是一个 2-layer MLP without bias。

映射向量 m 然后就变成了:$r * 2u$ 的 embedding matrix M。我们通过将 annotation A 和 lstm 的隐层状态 H 进行相乘,得到  the r weighted sums,结果矩阵就是句子的映射:

M = AH

2. Penalization Term 

当 attention 机制总是提供类似的 summation weights for all the r hops,映射矩阵 M 可能会受到冗余问题的影响。然后,我们需要一个惩罚项,来估计 summation weight vectors 变的 diverse。

最好的衡量的两个 summation weight vectors 之间的度量方式就是:KL Divergence(Kullback Leibler Divergence),然而,作者发现在这个问题中,并不适合。作者猜想这是由于:we are maximizing a set of KL divergence, we are optimizing the annotation matrix A to have a lot of sufficiently small or even zero values at different softmax output units, and these vast amount of zeros is making the training unstable. 另一个 KL 不具有的特征,但是我们缺需要的是:we want to each individual row to focus on a single aspect of semantics, so we want the probabilty mass in the annotation softmax output to be more focused.

我们将 A 乘以其转置,然后减去单位矩阵,作为其冗余度的度量:

Experiments:

==

论文笔记:A Structured Self-Attentive Sentence Embedding的更多相关文章

  1. 《A Structured Self-Attentive Sentence Embedding》(注意力机制)

    Background and Motivation: 现有的处理文本的常规流程第一步就是:Word embedding.也有一些 embedding 的方法是考虑了 phrase 和 sentence ...

  2. 将句子表示为向量(下):基于监督学习的句子表示学习(sentence embedding)

    1. 引言 上一篇介绍了如何用无监督方法来训练sentence embedding,本文将介绍如何利用监督学习训练句子编码器从而获取sentence embedding,包括利用释义数据库PPDB.自 ...

  3. 将句子表示为向量(上):无监督句子表示学习(sentence embedding)

    1. 引言 word embedding技术如word2vec,glove等已经广泛应用于NLP,极大地推动了NLP的发展.既然词可以embedding,句子也应该可以(其实,万物皆可embeddin ...

  4. Deep Learning论文笔记之(八)Deep Learning最新综述

    Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...

  5. 论文笔记之:Natural Language Object Retrieval

    论文笔记之:Natural Language Object Retrieval 2017-07-10  16:50:43   本文旨在通过给定的文本描述,在图像中去实现物体的定位和识别.大致流程图如下 ...

  6. 【论文笔记】Learning Fashion Compatibility with Bidirectional LSTMs

    论文:<Learning Fashion Compatibility with Bidirectional LSTMs> 论文地址:https://arxiv.org/abs/1707.0 ...

  7. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

  8. 论文笔记之:Visual Tracking with Fully Convolutional Networks

    论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...

  9. Twitter 新一代流处理利器——Heron 论文笔记之Heron架构

    Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture ...

随机推荐

  1. 时时监控的rtsp流视频显示在前端与一些css;

    不过试了下只兼容IE. <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...

  2. Python学习之旅(二十二)

    Python基础知识(21):IO编程 一.文件读写 读写文件就是请求操作系统打开一个文件对象(文件描述符),然后,通过操作系统提供的接口从这个文件对象中读取数据(读文件),或者把数据写入这个文件对象 ...

  3. LIBS入门

    样品汽化产生自由原子,原子电子的激发诱导光辐射产生表征原子的分立光谱,采集和分析光辐射. 光源:1064nm Nd:YAG固态激光器,10ns脉冲,焦点光密度1 GW·cm−2 可见和紫外光源.   ...

  4. 通过ALT+F9关键CALL追踪注册码

    1)弹出关键字对话框,记录关键字注册失败,请检查···· 2)使用PEID查壳 3)peid提示无壳 4)发送到OD 5)F9使od运行 5.1)继续输入用户 5.2)使其暂停 5.3)点击调试中的执 ...

  5. caffe报错:cudnn.hpp:86] Check failed: status == CUDNN_STATUS_SUCCESS (3 vs. 0) CUDNN_STATUS_BAD_PARAM 原因

    在实际项目中出现的该问题,起初以为是cudnn版本的问题,后来才定位到在网络进行reshape操作的时候 input_layer->Reshape({(), input_layer->sh ...

  6. Keras序列模型学习

    转自:https://keras.io/zh/getting-started/sequential-model-guide/ 1.顺序模型是多个网络层的线性堆叠. 你可以通过将网络层实例的列表传递给  ...

  7. cocos2d-x JS 重力感应监听事件

    说明 : 下面监听中的 acc属性 里面有很多可以使用的值 . 添加监听 : cc.inputManager.setAccelerometerEnabled(true); cc.eventManage ...

  8. java8模拟grouby方法

    public class ListUtils{ /** * list 集合分组 * * @param list 待分组集合 * @param groupBy 分组Key算法 * @param < ...

  9. Lambda表达式详解(例子详解)(转自:http://blog.csdn.net/damon316/article/details/51734661)

    Lambda表达式详解(例子详解)     lambda简介 lambda运算符:所有的lambda表达式都是用新的lambda运算符 " => ",可以叫他,“转到”或者 ...

  10. tensorflow变量

    tensorflow变量: 1.神经网络中的参数权重,偏置等可以作为张量保存到tensorflow的变量中 2.tensorflow变量必须被初始化 3.可被保存到文件中,下次使用重新加载即可 ten ...